Let $(X,\mathcal T)$ a topological space. Let $K\subset X$ a compact set and $A\subset K$. Is $\bar A$ compact ? (where $\bar A$ denote the closure).
This result is true if $\mathcal T$ is metrizable. But if $\mathcal T$ is not metrizable, is it true ? I tried as follow. Let $\mathcal U$ an open cover of $\bar A$. Let $\mathcal V$ an open cover of $K$. In particular, $\mathcal V\cup\mathcal U$ cover $K$ and thus there is a finite subcovering of $K$ of $\mathcal U\cup \mathcal V$, let say $\bigcup_{i=1}^n U_i\cup V_i$ In particular it cover $\bar A$.
Question : How can I be sure that $\bigcup_{i=1}^nU_i$ cover $\bar A$ ?