Find the orthogonal family of curves to the level lines of $f(x,y)=xy-1$.
My attemp:
The level lines are $$\left\lbrace(x,y)\in\mathbb R^2:xy-1=K\quad\text{for some constant }K\right\rbrace\text.$$
Differentiating both sides: $$\mathfrak F:y+xy'=0\Rightarrow\mathfrak F^\perp:y-\frac x{y'}=0\Rightarrow\mathfrak F^\perp:\frac{y^2}2-\frac{x^2}2=c\Rightarrow\boxed{\mathfrak F^\perp:y^2-x^2=C,\;C\in\mathbb R}\text.$$
Is that correct?
Thanks!