I have the following equation I would like to extract $x^k$ out of $$ \sum^\infty_{k=0}x^k \Gamma \bigg(l,\frac{ax-1}{a^2}\bigg) $$ I start by expanding the incomplete gamma function, and then the ensuing exponential $$ \begin{align} &= \sum^\infty_{k=0}x^k\Gamma(l)e^{-\frac{ax-1}{a^2}}\sum^{l-1}_{m=0}\bigg(\frac{ax-1}{a^2}\bigg)^m\frac{1}{m!}\\ &=\Gamma(l)\sum^\infty_{k=0}x^k\sum^\infty_{n=0}\bigg(\frac{1-ax}{a^2}\bigg)^n\frac{1}{n!}\sum^{l-1}_{m=0}\bigg(-\frac{1-ax}{a^2}\bigg)^m\frac 1{m!} \end{align} $$ I'm then not sure how to proceed.
My attempt is to pull the terminal sum out front and change the starting index of $k$ $$ =\Gamma(l)\sum^{l-1}_{m=0}\sum^\infty_{k=m}x^k\bigg(-\frac{1-ax}{a^2}\bigg)^m\frac 1{m!}\sum^\infty_{n=0}\bigg(\frac{1-ax}{a^2}\bigg)^n\frac{1}{n!} $$ I think then perhaps a binomial expansion of $1-ax$ to isolate $x$ and recombine as $$ =\Gamma(l)\sum^{l-1}_{m=0}\sum^\infty_{k=m}\sum^m_{j=0}\begin{pmatrix} m \\ j \end{pmatrix} (a^{-2})^j(a^{-1})^{m-j}\frac 1{m!}\sum^\infty_{n=0}\sum^n_{q=0}\begin{pmatrix} n \\ q \end{pmatrix} \left(a^{-2}\right)^{q}\left(-a^{-1}\right)^{n-q}(x)^{m-j+k+n-q}\frac{1}{n!} $$ I now have $x$ on its own, but have no idea how to pull it out front. I then want to reuse the exponential and incomplete gamma functions to tidy the resulting formula up. I'd imagine a quotient containing the incomplete gamma function as a final result.
** Edit **
In a similar (and simpler) example we would have $$ \sum^\infty_{k=0} x^k \sum^n_{m=0}\frac{(nx)^m}{m!} = \sum^n_{m=0}\sum^\infty_{k=m}x^k\frac{n^m}{m!} = \sum^\infty_{k=0}x^k\sum^{(k,n)}_{m=0}\frac{n^m}{m!} = e^n\sum^\infty_{k=0}x^k\frac{\Gamma((k,n)+1,n)}{\Gamma((k,n)+1)} $$ where $(k,n)$ denotes the lesser of $k$ or $n$. I wish to retain the sum over k and pull $x^k$ outside (if possible).