I'm trying to derive a closed-form expression for
$$I=\int_0^1\frac{\ln^4(x)}{x^2+1}\,dx$$
Letting $u=-\ln(x), x=e^{-u}, dx=-e^{-u}\,du $ yields
$$I=\int_0^{\infty}\frac{u^4e^{-u}}{e^{-2u}+1}\,du$$
Setting $u\to-u$ and manipulating the integrands yield
$$I=-\int_0^{-\infty}\frac{u^4e^{u}}{e^{2u}+1}\,du$$ $$=\int_{-\infty}^0\frac{u^4e^{-u}}{e^{-2u}+1}\,du$$
And adding the two equivalent forms of $I$ yields
$$2I=\int_{-\infty}^{\infty}\frac{u^4e^{-u}}{e^{-2u}+1}\,du$$
I've tried to differentiate under the integral sign, but I could not find any parameterization that worked for me. (Perhaps someone could tell me how to solve such integrals by differentiation under the integral sign?)
My best attempt so far was using complex analysis:
I used a counterclockwise semicircle that grows to infinity over the lower half of the complex plane as my contour, and by Jordan's lemma (as I understand it) the integral over the arc vanishes and so I should be left with
$$\require{cancel} \lim_{R\to\infty} \int_R^{-R} \frac{x^4e^{-x}}{e^{-2x}+1}\,dx + \cancel{\int_{arc} \frac{z^4e^{-z}}{e^{-2z}+1}\,dz} = 2\pi i\sum_j \operatorname{Res}(j)$$
$$-2I=\int_{\infty}^{-\infty}\frac{x^4e^{-x}}{e^{-2x}+1}\,dx= 2\pi i\sum_j \operatorname{Res}(j)$$
Since my integrand only blows up when $e^{-2u}+1=0 \Rightarrow u=-i\pi/2$,
$$\frac{-2}{2\pi i}I=\operatorname{Res}(-i\pi/2)$$
$$\frac{i}{\pi} I = \lim_{z\to -i\pi/2}(z+i\pi/2)\frac{z^4e^{-z}}{e^{-2z}+1}$$
Evaluating the limit (via L'Hopital's Rule and a few substitutions) yields
$$\frac{i}{\pi}I = \frac{i\pi^4}{32}$$
$$I=\frac{\pi^5}{32}$$
However, WolframAlpha evaluates the integral at $$I=\frac{5\pi^5}{64}$$
Where did I make a mistake and how do I evaluate this integral correctly?
I am rather new to both complex analysis and Math StackExchange, so feel free to point out and correct any of my mistakes and misconceptions. Any help is greatly appreciated!