Suppose that the complex numbers $\alpha$, $\beta$ and $\gamma$ satisfy \begin{align*} \alpha + \beta + \gamma &= 3, \\ \alpha^2 + \beta^2 + \gamma^2 &= 5, \\ \alpha^3 + \beta^3 + \gamma^3 &= 12. \end{align*}
I want to show that $\alpha^n + \beta^n + \gamma^n \in \mathbb{Z}$ for all $n \in \mathbb{Z}^+$ if possible, using the concept of symmetric polynomials from Galois theory, but I am not sure how.