While working on an earlier question involving $\sum_{j=0}^n \binom{n+j-1}{j} \frac{1}{2^{n+j}}$ I rewrote the sum as a contour integral, using generating functions: $$ \sum_{j=0}^n \binom{n+j-1}{j} \frac{1}{2^{n+j}} = \sum_{j=0}^n \left( \frac{1}{4^n} \binom{n+j-1}{j} \right) 2^{n-j} = [t^n] \left( \sum_{j=0}^\infty \frac{t^j}{4^n}\binom{n+j-1}{j} \cdot \sum_{j=0}^\infty t^j 2^j \right) $$ Now, using well known generating functions, for $|t|<1/2$: $$ \sum_{j=0}^\infty t^j \binom{n+j-1}{j} = \frac{1}{(1-t)^n} \quad \sum_{j=0}^\infty (2t)^j = \frac{1}{1-2t} $$ We get $$ \sum_{j=0}^n \binom{n+j-1}{j} \frac{1}{2^{n+j}} = [t^n] \left( \frac{1}{1-2t} \frac{1}{\left(4(1-t)\right)^n} \right) = \frac{1}{2 \pi i} \oint \frac{1}{1-2t} \left(\frac{1}{4 t(1-t)} \right)^n \frac{\mathrm{d} t}{t} $$ where the Cauchy integral formula was used along with $n! [t^n] g(t) = g^{(n)}(0)$.
Now, Byron Schmuland showed that the large $n$ limit of the left-hand-side equals $\frac{1}{2}$.
Question: Can one demonstrate $$ \lim_{n \to \infty} \frac{1}{2 \pi i} \oint_{ |t| = \rho} \frac{1}{1-2t} \left(\frac{1}{4 t(1-t)} \right)^n \frac{\mathrm{d} t}{t} = \frac{1}{2}$$ using asymptotic methods? Here $0<\rho<\frac{1}{2}$.