1) First, all $\|x\|_p=\sqrt[p]{|x_1|^p+...+|x_n|^p}$ are equivalent. In my course, they used Hölder inequality, i.e. that $$\|x\cdot y\|_1\leq \|x\|_p\|x\|_q$$ for $p,q\geq 1$ s.t. $\frac{1}{p}+\frac{1}{q}=1$. But can I do as follow :
Let $1\leq p<\infty $. I denote $\|x\|_\infty =\max\{|x_1|,...,|x_n|\}$. Then, $$\|x\|_\infty ^p\leq |x_1|^p+...+|x_n|^p\leq n\|x\|_\infty^p ,$$
and thus $$\|x\|_\infty \leq \|x\|_p\leq n^{1/p}\|x\|_\infty .$$ Therefore, if $1\leq r,p <\infty $, then $$\|x\|_p\leq C\|x\|_\infty \leq C\|x\|_r\leq Cn^{1/r}\|x\|_\infty \leq Cn^{1/r}\|x\|_p.$$
Therefore, $\|\cdot \|_p$ and $\|\cdot \|_r$ are equivalent.
Question 1: Does it work ? (then no need Hölder?)
2) All norms of $\mathbb R^n$ are equivalent. Let $N$ a norm.
Question 2: By what I did previously, I just need to prove that $N$ is equivalent to $\|\cdot \|_\infty $ to conclude that all norm are equivalent, true ?
To do it I tried as follow : $$N(x)=N(x_1e_1+...+x_ne_n)\leq |x_1|N(e_1)+...+|x_n|N(e_n)\leq \|x\|_\infty (N(e_1)+...+N(e_n)),$$ where $e_i=(0,...,0,1,0,...,0)$ where $1$ is at the $i-$th position.
Question 3: How can I show that $ N(x)\geq C\|x\|_\infty$ ?