If $f$ is continuous on $\mathbb{R}$, $f'(0)=1$ and $f(x+y)=f(x)f(y)$ for all $x \in\mathbb{R}$, show that $f'(x)=f(x)$ for all $x\in\mathbb{R}$.
Solution: It is clear that $f(0)=1$. For each $x$ we have: \begin{eqnarray} \lim_{h\to0}\frac{f(x+h)-f(x)}{h}=\cdots=f(x) \end{eqnarray}Hence, $f'(x)=f(x)$
My question: Where we use the continuity? Is it not enough that the function is defined on $\mathbb{R}$?