$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
With $\ds{\verts{z} < 1}$:
\begin{align}
\sum_{n = 1}^{\infty}\zeta\pars{2n + 1}z^{n} & =
\sum_{n = 1}^{\infty}
\bracks{\zeta\pars{2n + 1} - 1}\pars{\pm z^{1/2}}^{2n} +
\sum_{n = 1}^{\infty}z^{n}
\\[5mm] & =
\sum_{n = 1}^{\infty}
\bracks{\zeta\pars{2n + 1} - 1}\pars{\pm z^{1/2}}^{2n} +
{z \over 1 - z}
\end{align}
The first sum can be evaluated with the
A & S $\ds{\mathbf{\color{black}{6.3.15}}}$ identity. Namely,
\begin{align}
&\sum_{n = 1}^{\infty}\zeta\pars{2n + 1}z^{n}
\\[2mm] = &\
\bracks{\!\!{1 \over 2\pars{\pm\root{z}}} - {1 \over 2}\,\pi\cot\pars{\!\pi\bracks{\pm\root{z}}\!}\! -
{1 \over 1 - z} + 1 - \gamma - \Psi\pars{\! 1 \pm \!\root{z}\!}\!\!}
\\[2mm] & \phantom{\bracks{A}}+ {z \over 1 - z}
\\[5mm] = &\
\pm\,{1 \over 2\root{z}} \mp {1 \over 2}\,\pi\cot\pars{\pi\root{z}} - \gamma - \Psi\pars{1 \pm \root{z}}
\end{align}
where $\ds{\gamma}$ is the Euler-Mascheroni Constant and $\ds{\Psi}$ is the Digamma Function. By adding the expressions for both signs $\ds{~\pm~}$and dividing by two:
$$
\bbx{\sum_{n = 1}^{\infty}\zeta\pars{2n + 1}z^{n} =
-\gamma -
{\Psi\pars{1 + \root{z}} + \Psi\pars{1 - \root{z}} \over 2}}
$$