Here we give the result for $n=3$. Let $(s_1,s_2,s_3) \in {\mathbb R}_+^3$.
We note the following result:
\begin{eqnarray}
&&\int \text{arccos}(\frac{s}{r \sin(\theta)}) \sin(\theta) d\theta = \\
&&
\frac{s \text{arctan}\left(\frac{\sqrt{r^2} \cos (\theta)}{\sqrt{r^2 \sin ^2(\theta)-s^2}}\right)}{r}-\text{arctan}\left(\frac{\sqrt{s^2}
\cos (\theta)}{\sqrt{r^2 \sin ^2(\theta)-s^2}}\right)-\cos (\theta)
\text{arccos}\left(\frac{s \csc (\theta)}{r}\right) \quad (i)
\end{eqnarray}
We have:
\begin{eqnarray}
&&I(s_1,s_2,s_3)=\\
&&(\frac{2}{\sqrt{\pi}})^n
\int\limits_0^{s_1} \int\limits_0^{s_2} \int\limits_0^{s_3}
\frac{\Gamma((n+1)/2)}
{2 \sqrt{(1+t_1^2+t_2^2+t_3^2)^{1+n}} } dt_1 dt_2 d t_3=\\
&&(\frac{2}{\sqrt{\pi}})^n
\int\limits_0^{\sqrt{s_1^2+s_2^2+s_3^2}} \int\limits_{0}^{\pi/2} \int\limits_{0}^{\pi/2}
\frac{\Gamma((n+1)/2)}
{2 \sqrt{(1+r^2)^{1+n}} } r^2 \sin(\theta)
1_{0 < r \sin(\theta) \cos(\phi) < s_1}
1_{0 < r \sin(\theta) \sin(\phi) < s_2}
1_{0< r \cos(\theta) < s_3} d\phi d\theta dr=\\
&&\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!(\frac{2}{\sqrt{\pi}})^n
\int\limits_0^{\sqrt{s_1^2+s_2^2+s_3^2}} \int\limits_{0}^{\pi/2}
\frac{\Gamma((n+1)/2)}
{2 \sqrt{(1+r^2)^{1+n}} } r^2 \sin(\theta)
\cdot \text{max}\left(\text{arccos}(\frac{s_1}{r \sin(\theta)}) - \text{arcsin}(\frac{s_2}{r \sin(\theta)}) ,0\right) 1_{0< r \cos(\theta) < s_3} d\theta dr=\\
&&
\frac{1}{\sqrt{\pi}}\left( \arctan(s_1)+\arctan(s_2)+\arctan(s_3) \right)+\\
&&\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\frac{2 \imath }{\pi^{3/2}} \cdot \sum\limits_{1 \le i < j \le 3}\frac{s_i^2+s_j^2}{s_i s_j} \int\limits_0^{\sqrt{\frac{\sqrt{s_1^2+s_2^2+s_3^2}-\sqrt{s_i^2+s_j^2}}
{\sqrt{s_1^2+s_2^2+s_3^2}+\sqrt{s_i^2+s_j^2}}}}
\log\left( \frac{1-t^2+\imath (1+t^2) \sqrt{s_i^2+s_j^2}}{1-t^2-\imath (1+t^2) \sqrt{s_i^2+s_j^2}}\right) \cdot
\frac{(1-t^2)(1+6 t^2+t^4)}{((1+t^2)^2+4 t^2 \frac{s_j^2}{s_i^2})((1+t^2)^2+4 t^2 \frac{s_i^2}{s_j^2})} dt
\end{eqnarray}
In the top line we used the result for the partial derivative given in the first answer above, in the second line we went to spherical coordinates, in the third line we integrated over $\phi$ and in the final line we used $(i)$. Note that the integral above can be expressed through di-logarithms by decompositing the rational function in the integrand into partial fractions. We will complete that mundane task asap.
Update: Define $S:=\sqrt{s_1^2+s_2^2+s_3^2}$ and $k_{i,j}=3 \cdot 1_{{i,j}={1,2}} + 2 \cdot 1_{{i,j}={1,3}} + 1 \cdot 1_{{i,j}={2,3}}$.
Then also define:
\begin{eqnarray}
{\mathfrak F}^{(A,B)}_{a,b} &:=& \int\limits_A^B \frac{\log(z+a)}{z+b} dz\\
&=& F[B,a,b] - F[A,a,b] + 1_{t^* \in (0,1)} \left(
-F[A+(t^*+\epsilon)(B-A),a,b] + F[A+(t^*-\epsilon)(B-A),a,b] \right)
\end{eqnarray}
where
\begin{eqnarray}
t^*:=-\frac{Im[(A+b)(b^*-a^*)]}{Im[(B-A)(b^*-a^*)]}
\end{eqnarray}
and
\begin{equation}
F[z,a,b] := \log(z+a) \log\left( \frac{z+b}{b-a}\right) + Li_2\left( \frac{z+a}{a-b}\right)
\end{equation}
for $a$,$b$,$A$,$B$ being complex.
Then the final result is:
\begin{eqnarray}
&&I(s_1,s_2,s_3)=\\
&&\frac{1}{\sqrt{\pi}} \sum\limits_{i=1}^3 \arctan(s_i)
-\frac{2}{\pi^{3/2}}\sum\limits_{1 \le i < j \le 3}
\left(\pi - \arctan(\sqrt{s_i^2+s_j^2}) \right)\left( \arctan(\frac{s_j s_{k_{i,j}}}{s_i S}) + \arctan(\frac{s_i s_{k_{i,j}}}{s_j S})\right)+\\
&&-\frac{1}{2\pi^{3/2}} \sum\limits_{1 \le i < j \le 3}
\sum\limits_{\xi=1}^4 \sum\limits_{\eta=1}^8
(-1)^{\left\lfloor \frac{\eta -1}{4}\right\rfloor +\eta +\left\lfloor \frac{\xi -1}{2}\right\rfloor }
{\mathfrak F}^{(0,\frac{S-\sqrt{s_i^2+s_j^2}}{s_{k_{i,j}}})}_{(-1)^{\xi } \exp \left(i (-1)^{\left\lfloor \frac{\xi -1}{2}\right\rfloor } \tan ^{-1}\left(\sqrt{s_i^2+s_j^2}\right)\right),\frac{i (-1)^{\eta +1} \left((-1)^{\left\lfloor \frac{\eta -1}{4}\right\rfloor }
s_{\frac{1}{2} (-1)^{\left\lfloor \frac{\eta -1}{2}\right\rfloor +1} (j-i)+\frac{i+j}{2}}+\sqrt{s_i^2+s_j^2}\right)}{s_{\frac{1}{2} (-1)^{\left\lfloor \frac{\eta -1}{2}\right\rfloor
} (j-i)+\frac{i+j}{2}}}}
\end{eqnarray}
(*Definitions*)
Clear[F]; Clear[FF];
F[z_, a_, b_] :=
Log[a + z] Log[(b + z)/(-a + b)] + PolyLog[2, (a + z)/(a - b)];
FF[A_, B_, a_, b_] :=
Module[{result, ts, zs, zsp, zsm, eps = 10^(-15)},
(*This is Integrate[Log[z+a]/(z+b),{z,A,B}] where all a,b,A,
and B are complex. *)
result = F[B, a, b] - F[A, a, b];
ts = - (Im[(A + b) (Conjugate[b] - Conjugate[a])]/
Im[(B - A) (Conjugate[b] - Conjugate[a])]);
If[0 <= ts <= 1,
zsp = A + (ts + eps) (B - A);
zsm = A + (ts - eps) (B - A);
result += -F[zsp, a, b] + F[zsm, a, b];
];
result
];
n = 3; Clear[II];
II[s_] :=
NIntegrate[
Exp[-x^2] Product[Erf[s[[j]] x], {j, 1, Length[s]}], {x, 0,
Infinity}];
For[count = 1, count <= 200, count++,
s = Table[0, {3}];
{s[[1]], s[[2]], s[[3]]} =
Sort[RandomReal[{0, 5}, 3, WorkingPrecision -> 50]];
(*s[[3]]=RandomReal[{Sqrt[s[[1]]^2+s[[2]]^2],10},
WorkingPrecision\[Rule]50];*)
mArcSin[x_] := If[x > 1, Pi/2, ArcSin[x]];
mArcCos[x_] := If[x > 1, 0, ArcCos[x]];
x1 = II[s];
(*(2/Sqrt[Pi])^nNIntegrate[Gamma[(n+1)/2]/(2Sqrt[(1+t1^2+t2^2+
t3^2)^(1+n)]),{t1,0,s[[1]]},{t2,0,s[[2]]},{t3,0,s[[3]]}];*)
(*(2/Sqrt[Pi])^nNIntegrate[Gamma[(n+1)/2]/(2Sqrt[(1+r^2)^(1+n)])
r^2If[0<r Sin[th] Cos[phi]<s[[1]]&&0<r Sin[th] Sin[
phi]\[LessEqual]s[[2]]&&0<r Cos[th]<s[[3]],Sin[th],0],{r,0,Sqrt[s[[
1]]^2+s[[2]]^2+s[[3]]^2]},{th,0,Pi/2},{phi,0,Pi/2},
WorkingPrecision\[Rule]15]*)
k[i_, j_] :=
Which[{i, j} == {1, 2}, 3, {i, j} == {1, 3}, 2, {i, j} == {2, 3},
1];
S = Sqrt[s[[1]]^2 + s[[2]]^2 + s[[3]]^2];
x2 = (ArcTan[s[[1]]] + ArcTan[s[[2]]] + ArcTan[s[[3]]])/(\[Pi]^(
1/2)) + -2/\[Pi]^(3/2)
Sum[ (- ArcTan[Sqrt[s[[i]]^2 + s[[j]]^2]] +
Pi) (ArcTan[( s[[k[i, j]]] s[[j]] )/( S s[[i]] )] +
ArcTan[( s[[k[i, j]]] s[[i]] )/( S s[[j]])]) , {i, 1, 3}, {j,
i + 1, 3}] +
-(1 /(2 \[Pi]^(3/2)))
Sum[ (Sum[(-1)^Floor[(xi - 1)/2] (-1)^(
eta + Floor[(eta - 1)/4])
FF[0, (-Sqrt[s[[i]]^2 + s[[j]]^2] + S)/
s[[k[i, j]]], (-1)^
xi E^(((-1)^Floor[(xi - 1)/2])
I ArcTan[Sqrt[s[[i]]^2 + s[[j]]^2]] ),
I (-1)^(eta +
1) ((-1)^
Floor[(eta - 1)/
4] s[[(-1)^(1 + Floor[(eta - 1)/2]) (j - i)/
2 + (j + i)/2]] + Sqrt[(s[[i]]^2 + s[[j]]^2)])/
s[[(-1)^Floor[(eta - 1)/2] (j - i)/2 + (j + i)/2]]], {xi,
1, 4}, {eta, 1, 8}]) , {i, 1, 3}, {j, i + 1, 3}];
If[Abs[x2/x1 - 1] > 10^(-3),
Print["results do not match ..", count, s, {x1, x2}]; Break[]];
If[Mod[count, 10] == 0, PrintTemporary[count]];
];