Let $m=\gcd(a,b)$. Now $m\mid a$ and $m\mid b$, so $m^2\mid ab$.
Let $a=a_1m$, $b=b_1m$, for some positive integers $a_1$, $b_1\ge1$, then $a+b=ma_1+mb_1=m(a_1+b_1)$, so $m\mid a+b$.
There are three cases to consider:
Case 1:
If $m\nmid(a_1+b_1)$ then $\gcd(a+b,ab)=m$, and we have
$$\frac{\gcd(a+b,ab)}{\gcd(a,b)}=\frac{m}{m}=1\mid\gcd(a,b)=m$$
and the conjecture is true in this case.
Now we need to check whether $m^2\mid a+b=m(a_1+b_1)$, which is equivalent to $m\mid(a_1+b_1)$.
Case 2:
If $a_1+b_1=mc$, for some integer $c\ge1$, then $m\mid(a_1+b_1)$, and so $m^2\mid a+b=m(a_1+b_1)$. In this case $\gcd(a+b,ab)=m^2$ (note we cannot have $\gcd(a+b,ab)>m^2$ as $\gcd(a,b)=m$, therefore $m^3\nmid ab$), and we have
$$\frac{\gcd(a+b,ab)}{\gcd(a,b)}=\frac{m^2}{m}=m\mid\gcd(a,b)=m$$
and the conjecture is true in this case.
Consider lastly the case:
Case 3:
Let us assume
$$m<\gcd(a+b,ab)=\gcd(m(a_1+b_1),m^2a_1b_1)=m\gcd(a_1+b_1,ma_1b_1)<m^2$$
which simplifies to
$$1<\gcd(a_1+b_1,ma_1b_1)<m$$
We cannot have $m\mid(a_1+b_1)$, as then $\gcd(a_1+b_1,ma_1b_1)=m$, a contradiction. Further simplification gives
$$1<\gcd(a_1+b_1,a_1b_1)<m$$
Let $p$ be s.t. $1<p<m$ and $\gcd(a_1+b_1,a_1b_1)=p$. Then $p\mid a_1+b_1$ and $p\mid a_1b_1$, then $p\mid a_1$ or $b_1$. If $p\mid a_1$ then $p\mid a_1+b_1$ implies $p\mid(a_1+b_1)-a_1=b_1$, a contradiction since $\gcd(a_1,b_1)=1$.
So $\gcd(a_1+b_1,a_1b_1)=1$, and it follows $\gcd(a+b,ab)$ can take no value in $(m,m^2)$.
The conjecture is true.