I know I can transform the above product as follows
\begin{eqnarray*}\lim_{n\rightarrow\infty}\left(\frac{1}{2}\frac{3}{4}\frac{5}{6}...\frac{2n-1}{2n}\right)&=&\lim_{n\rightarrow\infty}\prod_{k=1}^n\left(\frac{2k-1}{2k}\right)\\&=&\lim_{n\rightarrow\infty}\prod_{k=1}^n\left(1-\frac{1}{2k}\right)\\&=&\lim_{n\rightarrow\infty}\prod_{k=1}^n\left(1+\frac{-1/2}{k}\right) \end{eqnarray*}
My thoughts are this is going to go to $e^{-x/2}$, but I can't figure out how to go from
$$\lim_{n\rightarrow\infty}\prod_{k=1}^n\left(1+\frac{-1/2}{k}\right)$$
to
$$\lim_{n\rightarrow\infty}\left(1+\frac{-1/2}{n}\right)^n$$