Like $ \cos {A} \cos {B} \cos {C} \leq \frac{1}{8} $,
$$-1=8\cos\alpha\cos\beta\cos(\alpha+\beta)=4[\cos(\alpha-\beta)+\cos(\alpha+\beta)]\cos(\alpha+\beta)$$
$$\iff\cos^2(\alpha+\beta)+\cos(\alpha+\beta)\cos(\alpha-\beta)+\dfrac14=0$$
which is a Quadratic Equation in $\cos(\alpha+\beta)$ which is real,
so, the discriminant must be $\ge0$
i.e., $$0\le\cos^2(\alpha-\beta)-1=-\sin^2(\alpha-\beta)$$
$$\implies(i)\sin(\alpha-\beta)=0$$
$\implies\alpha-\beta=m\pi$ where $m$ is any integer
As $0<\alpha,\beta<\dfrac\pi2,m=0\implies\cos(\alpha-\beta)=1$
and $$(ii)\cos(\alpha+\beta)=-\dfrac{\cos(\alpha-\beta)}2\implies\cos2\alpha=\dfrac12$$