Find Value of
$$I=\int _{0}^{\frac{\pi}{4}} \sqrt{\tan x}{\sqrt{1-\tan x}}\,\mathrm dx$$
My try:
Use substitution $\tan x=\sin ^2y$ we get
$$\mathrm dx=\frac{\sin 2y}{1+\sin^4y}\,\mathrm dy$$ we get
$$I=\frac{1}{2}\int_{0}^{\frac{\pi}{2}}\frac{\sin^2 2y}{1+\sin^4y}\,\mathrm dy$$
any way to continue now?