This does not involve continuity, but it is a "false proof" that involves basic concepts. I made this up as a problem set question when I first taught linear algebra.
What is incorrect about the following chain of reasoning?
We have this problem:
$$ \left[ \begin{array}{cc}
1 & -2 \\
3 & 2 \\
1 & -4
\end{array}
\right] \left[ \begin{array}{c}
x \\
y
\end{array}
\right] = \left[ \begin{array}{c}
-1 \\
5 \\
1
\end{array}
\right] $$
Hence:
$$ \left[ \begin{array}{ccc}
2 & 6 & 2 \\
-3 & 1 & 0
\end{array}
\right] \left[ \begin{array}{cc}
1 & -2 \\
3 & 2 \\
1 & -4
\end{array}
\right] \left[ \begin{array}{c}
x \\
y
\end{array}
\right] = \left[ \begin{array}{ccc}
2 & 6 & 2 \\
-3 & 1 & 0
\end{array}
\right] \left[ \begin{array}{c}
-1 \\
5 \\
1
\end{array}
\right] $$
Hence:
$$ \left[ \begin{array}{cc}
22 & 0 \\
0 & 8
\end{array}
\right] \left[ \begin{array}{c}
x \\
y
\end{array}\right] = \left[ \begin{array}{c}
30 \\
8
\end{array}
\right] $$
Therefore, the solution is $y = 1$, $x = 30/22$.