Let $a_0=3$ and $a_{n+1}=\sqrt{a_n+7}$ if $n>0$
Prove: $3<a_n<4$
At first I was quite surprised it's actually true for the base cases:
$n=0$, $a_1=\sqrt{3+7}=\sqrt{10}$
$n=1$, $a_2=\sqrt{\sqrt{10}+7}$
I'm not sure here how to even construct the induction hypothesis, never had an exercise where I needed to prove that some variable is in some range.
*Taken out of a book called "A Walkthrough Combinatorics" and unfortunately, there's no solution for this exercise.
I'm not a student yet so I don't know any university level math.