Problem
Given that $\lim\limits_{n \to \infty}\left(1+\dfrac{1}{n} \right)^n = e$, show that $1+\dfrac{1}{1!}+\dfrac{1}{2!}+\cdots=e$.
Proof
By binomial theorem, we have
\begin{align*}\left(1+\dfrac{1}{n}\right)^n&=\sum_{k=0}^{k=n}\binom{n}{k}1^k \left(\frac{1}{n}\right)^{n-k}\\ &=\sum_{k=0}^{k=n}\frac{1}{k!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\cdots \left(1-\frac{k-1}{n}\right). \end{align*}
Thus, on one hand, $$\left(1+\dfrac{1}{n}\right)^n \leq \sum_{k=0}^{k=n}\frac{1}{k!}.\tag1$$
Take the limits as $n \to \infty$ on the both sides of $(1)$. We have $$e=\lim_{n \to \infty}\left(1+\dfrac{1}{n}\right)^n\leq \varliminf_{n \to \infty} \sum_{k=0}^{k=n}\frac{1}{k!}.\tag2$$
On the other hand, take a positive integer $m$ such that $m<n$ and fix it. We have
$$\left(1+\dfrac{1}{n}\right)^n \geq \sum_{k=0}^{k=m}\frac{1}{k!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\cdots \left(1-\frac{k-1}{n}\right).\tag3$$
Likewise,take the limits as $n \to \infty$ on the both sides of $(3)$. We have
$$e=\lim_{n \to \infty}\left(1+\dfrac{1}{n}\right)^n\geq \sum_{k=0}^{k=m}\frac{1}{k!}.\tag4$$
Take the limits as $m \to \infty$ on the both sides of $(4)$. We have
$$e \geq \varlimsup_{m \to \infty}\sum_{k=0}^{k=m}\frac{1}{k!}.\tag 5$$
Combine $(2)$ and $(5)$. It follows that $$\lim_{n \to \infty}\sum_{k=0}^{k=n}\frac{1}{k!}=e.$$
Please correct me If I'm faulty. Hope to see other solutions.