Find from first principles, the derivative of $\log (\sec (x^2))$
My Attempt : Let, $y=f(x)=\log (\sec (x^2))$
$f(x+h)=\log (\sec (x+h)^2)$, where $h$ is a small increment in $x$
By first principle, $$f'(x)=\lim_{h\to 0} \dfrac {f(x+h)-f(x)}{h}$$ $$=\lim_{h\to 0} \dfrac {\log (\sec (x+h)^2)-\log(\sec (x^2))}{h}$$