There is someting to dig with $\tanh(x)$ because :
For $x>0$ it seems we have :
$$\int_{0}^{x}\frac{\sin\left(t\right)}{t}dt>\arctan\left(x\right)>\tanh\left(x\right)-1+\frac{\frac{\pi}{2}x-1}{x}$$
Improving it we have the following conjecture :
It seems we have for $x\geq 2$ :
$$\int_{0}^{x}\frac{\sin\left(t\right)}{t}dt>\frac{\frac{\pi}{2}x-1}{x}+\frac{\left(1-e^{-x}\right)}{x^{3}}>\arctan(x)$$
As other attempt we can try brute force with :
There exists $a,b,x,n>0$ such that $x\in[a,b],c=-\pi$ then it seems we have :
$$\arctan(x)<\frac{\frac{\pi}{2}x-1}{x}+\frac{\left(1-e^{-nx\sin\left(x\right)}\right)}{x^{3}}<Si(x)$$
Or :
$$\arctan(x)<\frac{\frac{\pi}{2}x-1}{x}+\frac{\left(1-e^{-n\left(x+c\right)\sin\left(x+c\right)}\right)}{\left(x+c\right)^{3}}<Si(x)$$
Using the derivative (without $n$ for the first and with for the second) :
$$f(x)=(x^{2}-3)/x^{4}-\left(e^{-\left(x\cos\left(x\right)\right)}\left(x^{2}\sin(x)-x\cos(x)-3\right)\right)/x^{4},g(x)=\left(1/x^{2}+\left(3\left(e^{\left(nx+n\pi\right)\sin\left(x)\right)}-1\right)\right)/\left(x+\pi\right)^{4}+e^{\left(nx+n\pi\right)\sin x}\right)\left(-\left(\left(n\sin x\right)/(x+\pi)^{3}-\left(n\cos x\right)/(x+\pi)^{2})\right)\right)$$