Let $f:\mathbb{R} \rightarrow \mathbb{R}$ be non-constant and differentiable with a sequence of $(x_n)_{n \in \mathbb{N}}$ such that $f'(x_n)=0 \, \forall \, n$ and $x_n \rightarrow c$ for some $c \in \mathbb{R}$. Can $f$ be analytic?
I'm looking for either a proof that $f$ cannot be analytic or an example of an analytic $f$.
(I'm most of the way through an answer to this question, trying to prove that an analytic function of a continuous random variable is itself a continuous random variable. But I'm stuck and need to prove that an $f$ as described cannot be analytic.)