Let $a_1;a_2;...;a_n\ge 0$. Prove that $$\frac{\sum ^n_{k=1}a_k}{n}\ge \sqrt[n]{\prod ^n_{k=1}a_k}$$
We will prove it's true with $n=k$. Indeed we need to prove it's true with $n=k+1$
WLOG $a_1\le a_2\le \cdots\le a_{k+1}$
So $a_{k+1}\ge \frac{\sum ^k_{x=1}a_k}{k}=x\ge 0\Rightarrow a_{k+1}\ge x+y(y\ge 0)$
We have: $$\left(\frac{a_1+...+a_{k+1}}{k+1}\right)^{k+1}\ge \left(\frac{kx+x+y}{k+1}\right)^{k+1}=\left(x+\frac{y}{k+1}\right)^{k+1}$$
But $$a_1\cdot \cdot \cdot a_{k+1}\le x^k\left(x+y\right)$$
Then we need to prove $\left(x+\frac{y}{k+1}\right)^{k+1}\ge x^k\left(x+y\right) $
I'm stuck here, i need someone can solve my stuck.