Taylor series of $$e^x = \sum\limits_{n=0}^{\infty}\frac{x^n}{n!}$$
For $$x = \cos \theta$$
$$e^{\cos \theta} = \sum\limits_{n=0}^{\infty}\frac{\cos^n\theta}{n!}$$
Let's integrate
$$\frac{1}{2\pi}\int\limits_{0}^{2\pi} e^{\cos \theta} \ d \theta = \sum\limits_{n=0}^{\infty} \frac{1}{2\pi n!}\int\limits_{0}^{2\pi}\cos^n\theta \ d\theta$$
But for even $n$ we have: $$\int\limits_{0}^{2\pi} \cos^n \theta = \frac{2 \pi}{2^{2k}}\frac{(2k)!}{(k!)^2}$$
and zero for odd $n$ (See here why),
Therefore:
$$\frac{1}{2\pi}\int\limits_{0}^{2\pi} e^{\cos \theta} \ d \theta = \sum\limits_{k=0}^{\infty} \frac{1}{2\pi (2k)!}\frac{(2k)!}{(k!)^2} = \sum\limits_{k=0}^{\infty} \frac{1}{2\pi (2k)!}\frac{2 \pi}{2^{2k}}\frac{(2k)!}{(k!)^2} = \sum\limits_{k=0}^{\infty} \frac{1}{2^{2k}}\frac{(1}{(k!)^2} = \sum\limits_{k=0}^{\infty} \frac{1}{(2^k k!)^2}$$