Evaluate the Sum
$$S=\frac{1}{4}+\frac{1.3}{4.6}+\frac{1.3.5}{4.6.8}+\cdots \infty$$
My try: We have the $n$ th term as
$$T_n=\frac{1.3.5. \cdots (2n-1)}{4.6.8 \cdots (2n+2)}$$ $\implies$
$$T_n=\frac{1.3.5. \cdots (2n-1)}{2^n \times (n+1)!}$$
$$T_n=\frac{(2n)!}{4^n \times n! \times (n+1)!}$$
$$T_n=\frac{\binom{2n}{n-1}}{n \times 4^n}$$
Any clue here?
Solving the recurrence relation gives:
$$S_n = 1 - \dfrac{1}{2} \dfrac{\dbinom{2(n+1)}{n+1}}{4^n} + C$$
Since $S_1 = \dfrac{1}{4}$, we have $C = 0$, which gives:
$$S_n = 1 - \dfrac{\dbinom{2(n+1)}{n+1}}{2\cdot 4^n}$$
Asymptotically, we have:
$$S_n \sim 1 - \dfrac{2}{\sqrt{\pi(n+1)}}$$
Taking the limit, we find:
$$\lim_{n \to \infty} S_n = 1$$
– SlipEternal Aug 09 '18 at 14:51