$\newcommand\Q{\mathbb Q}$Is it possible to find an irreducible polynomial $f\in \Q[x]$ of degree $4$ such that the following holds:
- All roots of $f$ are non-real
- The splitting field of $f$, $K_f$, contains "the" imaginary unit $\mathrm i$
- The maximum real subfield of $K_f$, i.e. $K_f\cap \mathbb R$, is not Galois over $\Q$
- $\mathrm{Gal}(K_f/\Q)\cong A_4$
I have the feeling that this cannot be done but I'm not sure how to prove this. Item 3. suggests that $K_f$ should not be some sort of cyclotomic extension but that is all I have figured. Can it be some radical extension? there is not much room to work with because I have only degree $4$.
In general, I would also like to have an intuition what the implication of having the imaginary unit is in a Galois number field. Will the Galois group have some specific property or will there be some characterizations for such fields?
Edit: I managed to find an example that satisfies 1,3 and 4. For instance $f=x^4 - x^3 - 3x + 4$.