Number of positive integer solutions of $x+y+z+w=26$ such that $x \lt y \lt z$
my try:
Let $y=x+p$ and $z=x+q$ where $p \ge 1$ and $q \ge 2$
Then we have
$$3x+p+q+w=26$$ $\implies$
$$p+q+w=26-3x$$
letting $q_1=q-1$ we get
$$p+q_1+w=25-3x$$ By stars and bars we get number of positive integer solutions as
$$\binom{25-3x-1}{3-1}=\binom{24-3x}{2}$$
But $x$ can take maximum value as $x=7$ since the last combination is $7,8,10,1$
So total solutions is
$$\sum_{x=1}^{7}\binom{24-3x}{2}=588$$
Is this correct approach?
You need $y=x+p, z = y +q, p\geq1, q\geq1$
– saulspatz Aug 08 '18 at 13:43