Here is a geometric approach which is equivalent to the solution from user582578 above:
Consider the graph of $f$ i.e. $\{(x,f(x))| x \in \mathbb{R} \}$. The transformation $f \to f^{-1}$ reflects this graph in the line $x=f(x)$. The transformation $f \to 1-f$ reflects this graph in the line $f(x)=\frac{1}{2}$.
So $f^{-1} = 1-f$ means that $f$ has a graph such that its reflection in $x=f(x)$ and its reflection in $f(x)=\frac{1}{2}$ are the same.
Given any $a,b \in \mathbb{R} \backslash \{ \frac{1}{2} \}$ with $a \ne b$ consider the (irregular) octagon with vertices
$\{P_0=(a,b),P_1=(b,a),P_2=(b,1-a),P_3=(1-a,b),$
$P_4=(1-a,1-b),P_5=(1-b,1-a),P_6=(1-b,a),P_7=(a,1-b)\}$
$f \to f^{-1}$ transforms this octagon as follows:
$P_0 \leftrightarrow P_1, P_2 \leftrightarrow P_3, P_4 \leftrightarrow P_5, P_6 \leftrightarrow P_7$
whereas $f \to 1-f$ transforms the octagon as follows:
$P_0 \leftrightarrow P_7, P_1 \leftrightarrow P_2, P_3 \leftrightarrow P_4, P_5 \leftrightarrow P_6$
so if the graph of $f$ contains the points $\{P_0, P_2, P_4, P_6\}$ then both transformations will map these points to $\{P_1, P_3, P_5, P_7\}$ and we have $f^{-1}=1-f$ for the restriction of $f$ to the domain $\{a,b,1-a,1-b\}$. Reading off the co-ordinates of $\{P_0, P_2, P_4, P_6\}$ we have
$f(a) = b\\f(b) = 1-a\\f(1-a) = 1-b\\f(1-b) = a$
and so
$f^{-1}(a) = 1-b = 1-f(a)\\f^{-1}(b) = a = 1-f(b)\\f^{-1}(1-a) = b = 1-f(1-a)\\f^{-1}(1-b) = 1-a = 1-f(1-b)$
As user582578 points out, we can partition $\mathbb{R} \backslash \{ \frac{1}{2} \}$ into pairs $\{a,1-a\}$, combine these pairs into pairs of pairs $\{ \{a, 1-a\}, \{b, 1-b\}\}$ and then use this construction to define $f$ on the four values in each pair of pairs. We then just add the special case $f(\frac{1}{2}) = \frac{1}{2}$ to complete the definition of a $f$ for which $f^{-1}=1-f$.