$\newcommand{\Cov}{\operatorname{Cov}}$Given the new background that the OP provided to his question (most general normal bivariate distribution for variables (X_1, X_2) with non-zero covariance), it is possible to find a general formula for $\Cov(X_1^m, X_2^n)$ as follows:
Consider the generating function $\phi(t_1,t_2)$ for the bivariate distribution given here, in equation (57) (a clean derivation is given for it so I won't repeat it). Then:
$$E(X_1^m X_2^n)=(-i)^{m+n}(\frac{\partial}{\partial t_1})^m(\frac{\partial}{\partial t_2})^n\phi(t_1,t_2)\Big|_{(t_1, t_2)=(0,0)} \tag 1$$
After some tedious and careful algebra we wish to write the generating function $\phi(t_1,t_2)=e^{it_1\mu_1+it_2\mu_2}e^{-\frac{1}{2}(\sigma_1^2t_1^2+2\rho\sigma_1t_1\sigma_2t_2+\sigma_2^2t_2^2)}$ in the form:
$$\phi(t_1,t_2)=e^{-a}e^{-b(t_2+c)^2}e^{-d(t_1+gt_2+h)^2}\tag2$$
which is possible for the values:
$$a=\frac{\mu_1^2}{2\sigma_1^2}+\frac{(\mu_2-\mu_1\rho \frac{\sigma_2}{\sigma_1})^2}{2\sigma^2_2(1-\rho^2)}, \hspace{0.2cm}b=\frac{1}{2}(1-\rho^2)\sigma_{2}^2, \hspace{0.2cm}c=-i\frac{\mu_2-\mu_1\rho \frac{\sigma_2}{\sigma_1}}{2\sigma^2_2(1-\rho^2)}, \hspace{0.2cm}d=\frac{\sigma_1^2}{2},\hspace{0.2cm} g=\frac{\rho\sigma_2}{\sigma_1},\hspace{0.2cm}h=-i\frac{\mu_1}{\sigma_1^2} $$
We change variables
$y_2=\sqrt{b}(t_2+c), y_1=\sqrt{d}(t_1+gt_2+h)$ and we find:
$$\begin{align}\frac{\partial}{\partial t_1}&=\sqrt{d}\frac{\partial}{\partial y_1}\\ \frac{\partial}{\partial t_2}&=g\sqrt{d}\frac{\partial}{\partial y_1}+\sqrt{b}\frac{\partial}{\partial y_2}\end{align}$$
Substitute into (1) for the result:
$$E(X_1^mX_2^n)=(-i)^{m+n}(\sqrt{d}\frac{\partial}{\partial y_1})^m(g\sqrt{d}\frac{\partial}{\partial y_1}+\sqrt{b}\frac{\partial}{\partial y_2})^n e^{-a}e^{-y_1^2}e^{-y^2_2}\Big|_{(y_1, y_2)=(c\sqrt{b},h\sqrt{d})}$$
Expanding the parentheses and using the Rodrigues formula for Hermite polynomials we get:
$$E(X_1^mX_2^n)=e^{-a-bc^2-dh^2}i^{m+n}g^n d^{\frac{m+n}{2}}\sum_{k=0}^n\frac{n!}{k!(n-k)!}\Big(\frac{\sqrt{b}}{g\sqrt{d}}\Big)^{n-k}H_{n-k}(h\sqrt{d})H_{m+k}(c\sqrt{b})$$
The expectation values $E(X_1^m)$ and $E(X_2^n)$ can be calculated by setting $n=0$, $m=0$ in the general formula respectively. Also, the imaginary units in the argument of the Hermite polynomials are precisely cancelled out by the imaginary prefactor, so that the final result is real.
EDIT: According to the analysis by @machfour, there is indeed an error in the expression of $c$, which has been corrected for. Due to this, the formula simplifies to the final expression:
$$\small{E(X_1^mX_2^n)=\Big(\frac{i}{\sqrt{2}}\Big)^{m+n}(\rho\sigma_2)^n \sigma_1^m\sum_{k=0}^n {n\choose k} \Big(\sqrt{\frac{1}{\rho^2}-1}\Big)^{n-k}H_{n-k}\Big(\frac{-i\mu_1}{\sigma_1\sqrt{2}}\Big)H_{m+k}\Big(-i\frac{\mu_2\sigma_1-\mu_1\rho}{\sqrt{2}\sigma_1\sigma_2\sqrt{1-\rho^2}}\Big)}$$