Let $f: \mathbb R \to \mathbb R$ satisfy the following inequality:
$$ f\left(\frac{x_1 + x_2}{2}\right) < {f(x_1) + f(x_2) \over 2} $$ Show that:
$$ f\left(\frac{x_1 + x_2 + x_3}{3}\right) < {f(x_1) + f(x_2) + f(x_3) \over 3} $$
The above appeared to be fairly simple for the case of $x_1, \;x_2, \; x_3, \;x_4$. (Let's call that case $n=4$)
By the initial conditions we have: $$ f\left(\frac{x_1 + x_2}{2}\right) < {f(x_1) + f(x_2) \over 2} \\ f\left(\frac{x_3 + x_4}{2}\right) < {f(x_3) + f(x_4) \over 2} $$
Adding the inequality gives:
$$ f\left(\frac{x_1 + x_2}{2}\right) + f\left(\frac{x_3 + x_4}{2}\right) < {f(x_1) + f(x_2) + f(x_3) + f(x_4) \over 2} \iff \\ \iff {1 \over 2}\left(f\left(\frac{x_1 + x_2}{2}\right) + f\left(\frac{x_3 + x_4}{2}\right)\right) < {f(x_1) + f(x_2) + f(x_3) + f(x_4) \over 4} $$
Let $p = \frac{x_1 + x_2}{2}$, $q = \frac{x_3 + x_4}{2}$, then using the initial conditions:
$$ f\left(\frac{p + q}{2}\right) < \frac{f(p) + f(q)}{2} $$
And therefore:
$$ f\left(\frac{x_1+x_2+x_3+x_4}{4}\right) < \frac{f(x_1) + f(x_2) + f(x_3) + f(x_4)}{4} $$
I see how this may be expanded further by induction for $n = 2^k$. However I failed to prove the case of $n = 3$.
How can I prove that the inequality holds for $n = 3$?