The following is a short derivation of the formula claimed in my comment. It is based on the Fourier series
$$-\ln(\sin(x)) = \ln(2) + \sum \limits_{k=1}^\infty \frac{\cos(2kx)}{k} \, , x \in (0,\pi) \, , \tag{1}$$
and the Dirichlet eta function
$$ \eta (s) = \sum \limits_{k=1}^\infty \frac{(-1)^{k-1}}{k^s} = \left(1-2^{1-s}\right) \zeta(s) \, , \, \operatorname{Re}(s) > 0 \, , \tag{2}$$
with the limit $\eta(1) = \ln(2)$ .
We can integrate by parts and use $(1)$ to obtain
\begin{align}
K_n &\equiv \int \limits_0^{\pi/2} t^n \cot(t) \, \mathrm{d} t = - n \int \limits_0^{\pi/2} t^{n-1} \ln(\sin(t)) \, \mathrm{d} t\\
&= \left(\frac{\pi}{2}\right)^{n} \ln(2) + \sum \limits_{k=1}^\infty \frac{1}{k} n \int \limits_0^{\pi/2} t^{n-1} \cos(2kt)\, \mathrm{d} t \, .
\end{align}
It is now useful to distinguish between even and odd $n$ . For $\nu \in \mathbb{N}$ we integrate by parts repeatedly to get
\begin{align}
K_{2\nu} &= \left(\frac{\pi}{2}\right)^{2 \nu} \ln(2) + \sum \limits_{k=1}^\infty \frac{1}{k} \frac{(2\nu)(2 \nu -1)}{4 k^2}\left[ (-1)^k \left( \frac{\pi}{2}\right)^{2\nu-2} - (2 \nu-2) \int \limits_0^{\pi/2} t^{2 \nu-3} \cos(2kt) \, \mathrm{d} t \right] \\
&= \frac{(2\nu)!}{2^{2 \nu}} \left[\frac{\pi^{2\nu}}{(2\nu)!} \eta(1) - \frac{\pi^{2(\nu-1)}}{(2(\nu-1))!} \eta(3) \right] - \frac{(2 \nu)!}{2^2 (2 \nu -3)!} \sum \limits_{k=1}^\infty \frac{1}{k^3} \int \limits_0^{\pi/2} t^{2\nu-3} \cos(2 k t) \, \mathrm{d} t \\
&= \frac{(2\nu)!}{2^{2 \nu}} \left[\frac{\pi^{2\nu}}{(2\nu)!} \eta(1) - \frac{\pi^{2(\nu-1)}}{(2(\nu-1))!} \eta(3) + \frac{\pi^{2(\nu-2)}}{(2(\nu-2))!} \eta(5) \right] \\
&\phantom{=}+ \frac{(2 \nu)!}{2^4 (2 \nu -5)!} \sum \limits_{k=1}^\infty \frac{1}{k^5} \int \limits_0^{\pi/2} t^{2\nu-5} \cos(2 k t) \, \mathrm{d} t \\
&= \dots \\
&= \frac{(2\nu)!}{2^{2 \nu}} \sum \limits_{l=0}^{\nu-1} (-1)^l \frac{\pi^{2(\nu-l)}}{(2(\nu-l))!} \eta(2l+1) + (-1)^{\nu-1} \frac{(2 \nu)!}{2^{2(\nu-1)}} \sum \limits_{k=1}^\infty \frac{1}{k^{2\nu-1}} \int \limits_0^{\pi/2} t \cos(2 k t) \, \mathrm{d} t \\
&= \frac{(2\nu)!}{2^{2 \nu}} \sum \limits_{l=0}^{\nu-1} (-1)^l \frac{\pi^{2(\nu-l)}}{(2(\nu-l))!} \eta(2l+1) + (-1)^\nu \frac{(2 \nu)!}{2^{2\nu}} \sum \limits_{k=1}^\infty \frac{1 + (-1)^{k-1}}{k^{2\nu+1}} \\
&= \frac{(2\nu)!}{2^{2 \nu}} \left[ \sum \limits_{l=0}^{\nu} (-1)^l \frac{\pi^{2(\nu-l)}}{(2(\nu-l))!} \eta(2l+1) + (-1)^\nu \zeta(2\nu+1)\right] \, .
\end{align}
Similarly,
\begin{align}
K_{2\nu-1} &= \frac{(2\nu-1)!}{2^{2 \nu-1}} \sum \limits_{l=0}^{\nu-1} (-1)^l \frac{\pi^{2(\nu-l)-1}}{(2(\nu-l)-1)!} \eta(2l+1) + (-1)^{\nu-1} \frac{(2 \nu-1)!}{2^{2\nu-3}} \sum \limits_{k=1}^\infty \frac{1}{k^{2\nu-2}} \int \limits_0^{\pi/2} \cos(2 k t) \, \mathrm{d} t \\
&= \frac{(2\nu-1)!}{2^{2 \nu-1}} \sum \limits_{l=0}^{\nu-1} (-1)^l \frac{\pi^{2(\nu-l)-1}}{(2(\nu-l)-1)!} \eta(2l+1) \, ,
\end{align}
but here the final integral vanishes and there is no extra term.
Milen Ivanov's hint from the comments now yields
$$G(n) = \frac{\pi}{2} K_n - K_{n+1}$$
for $n \in \mathbb{N}$ . Note that the term containing $\eta(1) = \ln(2)$ always cancels, so by the above calculation $G(n)$ is given by a sum of powers of $\pi$ times zeta values at the odd integers between $3$ and $2\left\lfloor\frac{n+1}{2}\right\rfloor+1$ with rational coefficients.