I have the following definition of bounded subset in a metric space:
Let $X\subset M$ where $M$ is metric space. Then $X$ is said to be bounded if for all $x,y\in X, d(x,y) \le c$ for some $c$.
And I have these two definitions of a bounded function $f: X\to S$ where $X$ is arbitrary set and $S$ is a vector space with a norm $|\cdot|$ (made metric space through $d(x,y) := |x-y|$):
1) $f$ is said to be bounded if $f(X)$ is a bounded subset of $S$. 2) $f$ is said to be bounded if $|f(x)| \le k$ for some k.
I want to see whether these definitions are equivalent. 1 follows easily from 2 using triangle inequality:
$$|f(x) - f(y)| \le |f(x)|+|f(y)| \le 2c. $$
But I'm stuck in the converse. I think one problem is that the $0$ vector of $S$ is not necessarily in the image $f(X)$ but I'm still getting nothing from this. Any help will be appreciated.