I am given the following problem in a textbook, and it's a solved problem.
Find $\displaystyle \lim_{(x,y) \to (0,0)} \frac{x^2 y^2}{x^4 + 3y^4}$ or justify its nonexistence.
The author justifies the nonexistence of the limit in the following way: he uses the paths $x = 0$ then $y = 0$ and then, to justify its nonexistence, $y = x$. These are the author's notes:
Since
\begin{align} \lim_{(x,0) \to (0,0)} \frac{x^2 y^2}{x^4 + 3y^4} = \lim_{(x,0) \to (0,0)} \frac{x^2 \cdot 0^2}{x^4 + 3 0^4} = \lim_{(x,0) \to (0,0)} \frac{0}{x^4} = 0 \end{align}
and
\begin{align} \lim_{(0,y) \to (0,0)} \frac{x^2 y^2}{x^4 + 3y^4} = \lim_{(0,y) \to (0,0)} \frac{0^2 \cdot y^2}{0^4 + 3 y^4} = \lim_{(0,y) \to (0,0)} \frac{0}{3y^4} = 0 \end{align}
but
\begin{align} \lim_{(x,x) \to (0,0)} \frac{x^2 y^2}{x^4 + 3y^4} = \lim_{(x,x) \to (0,0)} \frac{x^2 \cdot x^2}{x^4 + 3 x^4} = \lim_{(x,x) \to (0,0)} \frac{x^4}{4x^4} = \frac{1}{4} \end{align}
then the limit does not exist.
So my question is: are these limits
\begin{align} \lim_{(0,y) \to (0,0)} \frac{0}{3y^4} \qquad \lim_{(x,0) \to (0,0)} \frac{0}{x^4} \end{align}
really equal to zero? Shouldn't they be indeterminate, given that the variable on the denominator approaches zero?