2

The problem is as follows:

let: $$ 0<a<\frac{\pi}{2} , 0<b<1 $$

show that: $$ \int_{0}^{a}\sin(x)dx+\int_{0}^{b}\arcsin(x)dx\geq ab $$

I've tried to calculate the second integral over y and not over x (over $\sin(y)$, didn't got very far.

The solution should be simple, and may involve using double integrals or using the graphs of the sine function and it's inverse in the rectangle that $a$ and $b$ form in $\mathbb{R}^2$.

even an hint would be appreciated.

Thanks

juleand
  • 319
  • 3
    It's more of a general inequality: https://en.wikipedia.org/wiki/Young%27s_inequality_for_products#Standard_version_for_increasing_functions. – StubbornAtom Aug 02 '18 at 16:11

1 Answers1

0

The signs and monotonicty here are such that the integrals measure the area below the curve.

The parameter ranges allows the decomposition of the rectangle $[0, b] \times [0, \arcsin(b)]$ like this: $$ \int\limits_0^b \arcsin(x)\, dx = \arcsin(b)\, b - \int\limits_0^{\arcsin(b)} \sin(y)\, dy $$ For $a \le \arcsin(b)$ we have $$ \int\limits_0^b \arcsin(x)\, dx = \arcsin(b)\, b - \int\limits_0^a \sin(y)\, dy - \int\limits_a^{\arcsin(b)} \sin(y)\, dy $$ which means $$ \int\limits_0^a \sin(x)\, dx + \int\limits_0^b \arcsin(x)\, dx = \underbrace{\arcsin(b) \, b}_{\ge ab} - \underbrace{\int\limits_a^{\arcsin(b)} \sin(x)\, dx}_{\ge 0} \ge a b $$ We can also decompose $[0, a] \times [0, \sin(a)]$ like this: $$ \int\limits_0^a \sin(x)\, dx = a\, \sin(a) - \int\limits_0^{\sin(a)} \arcsin(y)\, dy $$ This gives an estimation for $b \le \sin(a)$: $$ \int\limits_0^a \sin(x)\, dx + \int\limits_0^b \arcsin(y)\, dy \ge a\, b $$ Finally $$ b \le \sin(a) \iff \arcsin(b) \le \arcsin(\sin(a))= a $$ so we cover the other case as well.

mvw
  • 34,562