The signs and monotonicty here are such that the integrals measure the area below the curve.
The parameter ranges allows the decomposition of the rectangle $[0, b] \times [0, \arcsin(b)]$ like this:
$$
\int\limits_0^b \arcsin(x)\, dx =
\arcsin(b)\, b - \int\limits_0^{\arcsin(b)} \sin(y)\, dy
$$
For $a \le \arcsin(b)$ we have
$$
\int\limits_0^b \arcsin(x)\, dx =
\arcsin(b)\, b
- \int\limits_0^a \sin(y)\, dy
- \int\limits_a^{\arcsin(b)} \sin(y)\, dy
$$
which means
$$
\int\limits_0^a \sin(x)\, dx + \int\limits_0^b \arcsin(x)\, dx =
\underbrace{\arcsin(b) \, b}_{\ge ab}
-
\underbrace{\int\limits_a^{\arcsin(b)} \sin(x)\, dx}_{\ge 0}
\ge a b
$$
We can also decompose $[0, a] \times [0, \sin(a)]$ like this:
$$
\int\limits_0^a \sin(x)\, dx =
a\, \sin(a) - \int\limits_0^{\sin(a)} \arcsin(y)\, dy
$$
This gives an estimation for $b \le \sin(a)$:
$$
\int\limits_0^a \sin(x)\, dx + \int\limits_0^b \arcsin(y)\, dy \ge
a\, b
$$
Finally
$$
b \le \sin(a) \iff \arcsin(b) \le \arcsin(\sin(a))= a
$$
so we cover the other case as well.