Compute $T_t(S^1)$ in $(\cos(t),\sin(t))$ with parametrization $f(t)=(\cos(t),\sin(t)).$
I have this:
I know, $T_tf:T_t\mathbb{R}\to T_{f(t)}S^1$ now $T_tf(\left.\frac{d}{ds}\right|_{s=0}(t+sK))=\left.\frac{d}{ds}\right|_{s=0} f(t+sK)=K(-\sin(t),\cos(t))$.
Therefore $T_tf(K)=K(-\sin(t),\cos(t))$.
Now that I have the tangent function. How do I get $T_t(S^1)$?