$$\int_{0}^{\infty} \frac{e^{-x \cosh t}}{\sqrt{\sinh t}}dt$$
I'm trying to use Laplace's method to find the leading asymptotic behavior as $x$ goes to positive infinity, but I'm having some trouble. Could someone help me?
$$\int_{0}^{\infty} \frac{e^{-x \cosh t}}{\sqrt{\sinh t}}dt$$
I'm trying to use Laplace's method to find the leading asymptotic behavior as $x$ goes to positive infinity, but I'm having some trouble. Could someone help me?
In Laplace's method, we recognize that the main contribution to the integral is in the neighborhood of the minimum of the exponent, here at $t=0$. It appears that the slowly varying part of the integrand has a singularity there, but this singularity is integrable. Thus, we may approximate as follows, noting that $\sinh{t} \sim t$ and $\cosh{t} \sim 1+\frac{t^2}{2}$ as $t \rightarrow 0$:
$$I(x) = \int_{0}^{\infty} dt \: \frac{e^{-x \cosh t}}{\sqrt{(\sinh t)}} \sim e^{-x} \int_{0}^{\infty} dt \: \frac{e^{-x t^2/2}}{\sqrt{t}} $$
This latter integral may be evaluated any number of ways; here, we substitute $v = x t^2$, $dv = 2 \sqrt{x v} dt$, and get
$$I(x) \sim \frac{1}{2} e^{-x} x^{-1/4} \int_{0}^{\infty} dv \: v^{-3/4} e^{-v/2} $$
or
$$I(x) \sim 2^{-3/4} \Gamma \left ( \frac{1}{4} \right ) e^{-x} x^{-1/4} $$
as $x \rightarrow \infty$.
Changing the variable of integration from $t$ to $s$ using $t = \cosh^{-1}(1 + s)$ transforms the integral into the form $$ {\rm e}^{ - x} \int_0^{ + \infty } {{\rm e}^{ - xs} s^{ - 3/4} (2 + s)^{ - 3/4} {\rm d}s} . $$ Applying Watson's lemma directly leads to the asymptotic expansion $$ {\rm e}^{ - x} \int_0^{ + \infty } {{\rm e}^{ - xs} s^{ - 3/4} (2 + s)^{ - 3/4} {\rm d}s} \sim \frac{\Gamma \big( {\tfrac{1}{4}} \big)}{\sqrt 2}\frac{{{\rm e}^{ - x} }}{{ (2x)^{1/4} }}\sum\limits_{n = 0}^\infty \frac{{\left( {\frac{1}{4}} \right)_n \left( {\frac{3}{4}} \right)_n }}{{n!}}\frac{{( - 1)^n }}{{(2x)^n }} , $$ as $x\to+\infty$. Here, $(a)_n = \Gamma(a+n)/\Gamma(a)$ represents the Pochhammer symbol.