This is not the answer; it is just to save the time of a person who would like to try the approach with correlation. It turns out that the sequence we want to prove the convergence in probability is bounded in $\mathbb L^2$ hence uniformly integrable, hence it should also converge in $\mathbb L^1$ to $0$.
First let us extract some useful information from this thread: the expectation of $M_n$ is $1/(n+1)$ and its density is $n\left(1-u\right)^{n-1}\mathbf 1_{(0,1)}(u)$. As a consequence, $\mathbb E\left[T_n\right]=\sum_{i=1}^n1/(i+1)$ and it would suffices to prove that
$$\lim_{n\to +\infty}
\frac 1{\left(\ln n\right)^2}\mathbb E\left[\left(\sum_{i=1}^nM_i-\mathbb E\left[M_i\right]\right)^2\right]=0.
$$
To this aim, we would like to show that
$$\tag{1}
\lim_{n\to +\infty}
\frac 1{\left(\ln n\right)^2}\sum_{i=1}^n\mathbb E\left[\left(M_i-\mathbb E\left[M_i\right]\right)^2\right]=0;
$$
$$\tag{2}\lim_{n\to +\infty}
\frac 1{\left(\ln n\right)^2}\mathbb E\left[ \sum_{1\leqslant i\lt j\leqslant n}M_iM_j-\mathbb E\left[M_iM_j\right] \right]=0.
$$
Let us show (1). Using the expression for the density of $M_i$, we get
$$
\mathbb E\left[M_i^2\right]=\int_0^1u^2i\left(1-u\right)^{i-1}\mathrm du
=\int_0^1\left(1-v\right)^2iv^{i-1}\mathrm dv=1-2\frac{i}{i+1}+\frac{i}{i+2}
$$
which can be simplified as
$$
\mathbb E\left[M_i^2\right]=\frac 2{i+1}-\frac 2{i+2},
$$
hence $$\sum_{i=1}^n\mathbb E\left[\left(M_i-\mathbb E\left[M_i\right]\right)^2\right]=1-\frac{2}{n+2}-\sum_{i=1}^n\frac 1{(i+1)^2}\leqslant 1,
$$
from which (1) follows.
Let us look at (2). Observe that (2) can be rewritten as
$$
\lim_{n\to +\infty}
\frac 1{\left(\ln n\right)^2} \sum_{i=1}^n \sum_{j=1}^{n-i}c_{i,j} =0,
$$
where $c_{i,j}:=\mathbb E\left[M_iM_{i+j}\right]-\mathbb E\left[M_i\right]\mathbb E\left[M_{i+j}\right] $.
Observing that $M_{i+j}$ has the same law as $\min\left\{M_i,M'_j\right\}$, where $M'_j$ has the same law as $M_j$ and is independent of $M_i$, we get
$$
c_{i,j}=\int_0^1\int_0^1u\min\left\{u,v\right\}i\left(1-u\right)^{i-1}j\left(1-v\right)^{j-1}\mathrm du\mathrm dv-\frac 1{\left(i+1\right)\left(j+1\right)}.
$$
A computation shows that
$$
c_{i,j}=\frac 1{j+1}\left(\frac{i}{i+j+2}-\frac{i}{i+j+1}\right),
$$
which can be transformed as
$$
c_{i,j}=\frac 1{j+1}\frac{i+1}{i+j+2}-\frac 1{j+1}\frac{i}{i+j+1}+\frac 1{(j+1)(i+j+2)}.
$$
For the first two terms, we switch the sum and use telescoping in $i$ to find
$$\sum_{j=1}^{n-1}\sum_{i=1}^{n-j}\frac 1{j+1}\frac{i+1}{i+j+2}-\frac 1{j+1}\frac{i}{i+j+1}=\sum_{j=1}^{n-1}\frac 1{j+1}\frac{n-j+1}{n+2}-\frac 1{j+1}\frac{2}{j+3}
$$
hence
$$
\left\lvert \sum_{j=1}^{n-1}\sum_{i=1}^{n-j}\frac 1{j+1}\frac{i+1}{i+j+2}-\frac 1{j+1}\frac{i}{i+j+1}\right\rvert\leqslant 3\sum_{j=1}^{n-1}\frac 1{j+1}
$$
which is negligible with respect to $(\ln n)^2$.
For the last term, it behaves like
$$\sum_{j=1}^{n-1}\sum_{i=j+1}^n\frac 1{ij}=\sum_{i=2}^n\frac 1i \sum_{j=1}^{i-1}\frac 1j,$$
which is exactly the failure of (2), since the latter quantity is of order $(\ln n)^2$.