Possible Duplicate:
Nonnegative linear functionals over $l^\infty$
An explicit functional in $(l^\infty)^*$ not induced by an element of $l^1$?
Everything is in the title:
How to construct an "explicit" element of $(\ell^\infty(\mathbb N))^* \setminus \ell^1(\mathbb N)$?
To be more precise:
I define the Banach spaces $(\ell^1(\mathbb N),\|\cdot \|_1)$ and $(\ell^\infty(\mathbb N),\|\cdot \|_\infty)$ as usual by $$\begin{align} \ell^1(\mathbb N) & :=\big\{ (x_n)_{n\in\mathbb N}\in \mathbb R^\mathbb N \,\big|\, \sum_{n\in\mathbb N} |x_n|<\infty \big\}\,, & \|x\|_1 & := \sum_{n\in\mathbb N} |x_n|\,, \\ \ell^\infty(\mathbb N) & :=\big\{ (x_n)_{n\in\mathbb N}\in \mathbb R^\mathbb N \,\big|\, \sup_{n\in\mathbb N} |x_n|<\infty \big\}\,, & \|x\|_\infty & := \sup_{n\in\mathbb N}|x_n|\,. \end{align}$$ The application $$\begin{align} f:\ell^1(\mathbb N) & \to (\ell^\infty(\mathbb N))^* \\ x & \mapsto \big(y\mapsto\sum_{n\in\mathbb N}x_ny_n\big) \end{align}$$is not surjective: I know how prove the existence of an element of $(\ell^\infty(\mathbb N))^* \setminus f(\ell^1(\mathbb N))$ using the Hahn-Banach theorem.
But I would like to construct an "explicit" example of such a functional.
Does someone know how to do that?