Let $X,Y $ be independent random variables.
Suppose that $X,Y \sim U(0,1) $
the pdf for a uniform random variable $Z \sim \textrm{Uniform}(a,b)$
$$f(z) =\begin{align}\begin{cases} \frac{1}{b-a} & \textrm{ for } a \leq z \leq b \\ 0 & \textrm{ for } z <a\textrm{ or } z >b \end{cases} \end{align}$$
then we have
$$f(x) =\begin{align}\begin{cases} 1 & \textrm{ for } 0 \leq x \leq 1 \\ \\ 0 & \textrm{ for } x <0 \textrm{ or } x > 1 \end{cases} \end{align}$$
$$f(y) =\begin{align}\begin{cases} 1 & \textrm{ for } 0 \leq x \leq 1 \\ \\ 0 & \textrm{ for } x <0 \textrm{ or } x > 1 \end{cases} \end{align}$$
then we have
$$P(XY < t) = \int_{0}^{t} \int_{0}^{1} f(x) f(y) dx dy + \int_{t}^{1} \int_{0}^{\frac{t}{y}} f(x) f(y) dx dy $$
computing the left side
$$ \int_{0}^{t} \int_{0}^{1} 1 \cdot 1 dx dy = \int_{0}^{1} x \Big|_{0}^{1} = \int_{0}^{t} 1 dy = t \Big|_{0}^{1} = t $$
Computing the right
$$ \int_{t}^{1} \int_{0}^{\frac{t}{y}} f(x) f(y) dxdy = \int_{t}^{1}\int_{0}^{\frac{t}{y}} 1 \cdot 1 dx dy = \int_{t}^{1} x \Big|_{0}^{\frac{t}{y}} = \int_{t}^{1}\frac{t}{y} dy$$
$$t\int_{t}^{1} \frac{1}{t} dy = t \ln(y) \Big|_{t}^{1} $$
$$ t \ln(1) - t \ln(t) =t\ln(\frac{1}{t}) $$
adding
$$ t + t\ln(\frac{1}{t}) $$