-2

I can't work out how to prove this equation is true by proof of mathematical

Use mathematical induction to prove that, for $n \ge 3$

$$\sum_{j=3}^n \binom{j-1}{2} = \binom{n}{3}$$

Please help, thanks

Eric Wofsey
  • 330,363

1 Answers1

0

Assume $$\sum_{j=3}^n \binom{j-1}{2} = \binom{n}{3}$$ is true. Let's prove $$\sum_{j=3}^{n+1} \binom{j-1}{2} = \binom{n+1}{3}$$ So $$\sum_{j=3}^{n+1} \binom{j-1}{2} = \sum_{j=3}^{n} \binom{j-1}{2} + \binom{n}{2} = \binom{n}{3}+ \binom{n}{2} = \frac{n!}{3!(n-3)!}+\frac{n!}{2!(n-2)!} = \frac{(n+1)!}{3!(n-2)!} = \binom{n+1}{3}$$

Ahmad Bazzi
  • 12,076