Find the remainder after division when $4^{2018}$ is divided by $29$.
My approach:
we have $$4^{2018}=16^{1009}=-\left(1-17\right)^{1009}=-\left(\binom{1009}{0}-\binom{1009}{1}17+\binom{1009}{2}17^2+\cdots\binom{1009}{1009} 17^{1009}\right)$$
Now $$17^2 \equiv -1 \pmod{29}.$$
Any hint how to proceed now?