Every Italian likes to eat pizza.
In predicate logic, are these formalizations syntactically and semantically correct?
- $$\forall x \forall y(\text{Italian}(x) \land \text{Pizza}(y) \implies \text{LikeToEat}(x,y))$$ ($∀x∀y \text{ Italian}(x)∧\text{Pizza}(y)⟹\text{LikeToEat}(x,y)$ should also be correct.)
- $$\forall x: (\text{Italian}(x) \implies \text{LikeToEatPizza}(x))$$ (Is the colon's placement syntactically correct?)
- $$\forall \text{italian} \in \text{Italian}: \text{LikeToEatPizza}(\text{italian})$$
- $$\forall i( L(\text{pizza}))$$
- $$\forall i: \text{EatingPizza}(x)$$
- $$ \forall x: L(x) $$ ($x:$ Italian ; $L:$ likes to eat pizza)
∀x Px⇒Qx
does not mean∀x(Px⇒Qx)
, but instead(∀y Py)⇒Qx
. – ryang Jun 04 '23 at 07:55