$$a_k=\left(a_{k-1}\right)^2-2$$
$a_0=\frac{5}{2}$
Then find $$P=\prod_{k=0}^{\infty} \left(1-\frac{1}{a_k}\right)$$
My try:
I rewrote the Recurrence equation as
$$a_k+1=(a_{k-1}-1)(a_{k-1}+1)$$ $\implies$
$$\frac{1}{a_{k-1}-1}=\frac{a_{k-1}+1}{a_k+1}$$ $\implies$
$$\frac{a_{k-1}}{a_{k-1}-1}=\frac{(a_{k-1})^2+a_{k-1}}{a_k+1}=\frac{a_k+a_{k-1}+2}{a_k+1}$$
any hint here?