Let $f:[0,\infty [\to \mathbb R$ a continuous function such that $\int_1^\infty \frac{f(x)}{x}dx$ converge. Prove that $$\int_0^\infty \frac{f(ax)-f(bx)}{x}dx$$ converge and compute this integral.
Attempts
For the convergence : Since for all $t>0$, $$\int_t^\infty \frac{f(ax)}{x}dx\quad \text{and}\quad \int_t^\infty \frac{f(bx)}{x}dx$$
converge, we have that $\int_0^\infty \frac{f(ax)}{x}dx$ and $\int_0^\infty \frac{f(bx)}{x}dx$ that converge, and thus $$\int_0^\infty \frac{f(ax)-f(bx)}{x}dx.$$
But how I can compute this integral ?