Let $ \ A=\{0,1\} \ $. Prove that the countable product of $ \ A=\{0,1 \} \ $ has same cardinality to $ \ \mathbb{R} \ $.
Answer:
Let $ \ P(\mathbb{N}) \ $ be the power set of $ \ \mathbb{N} \ $.
Let $ \ \lambda: \prod_{i \in \mathbb{N}} A \to P(\mathbb{N}) \ $ (Cartesian product ) be the function defined as follows:
an element $ \ f \ $ in $ \ \prod_{i \in \mathbb{N}}A \ $ is a function $ \ f: \mathbb{N} \to \{0,1 \} \ $ .
So let $ \ \lambda(f)=\{ n \in \mathbb{N} |f(n)=0 \} \ $.
The proof will be complete if we show that $ \ \lambda \ $ is a bijective function.
I am unable to show $ \ \lambda \ $ is bijective .
Help me