My question is: $GCD(\frac{2^{40}+1}{2^8+1}, 2^8+1)$, but I'm stuck here: $GCD(2^{32}-2^{24}+2^{16}-2^8+1, 2^8+1)$. How I resolve this?
For to get $GCD(2^{32}-2^{24}+2^{16}-2^8+1, 2^8+1)$ I make the result that $(x^5+y^5) = (x+y)(x^4 - x^3y + x^2y^2-xy^3+y^4)$ and then, I choose $x = 2^8 $ and $y = 1$.