0

I'd like to ask whether there exists a formula which generates the primitive integer solutions to the Diophantine equation $x^2+y^2=2(u^2+v^2)$? Primitive means $x$, $y$, $u$ and $v$ are coprime. Thanks.

Hang Wu
  • 1,576

5 Answers5

3

This method is based on Fricke and Klein (1897). I have a cheap reprint of the German original, an English translation has just come out. This is the first volume on automorphic forms, the one that treats discrete groups.

Part One: all integer solutions of $$ ab = 2cd $$ are parametrized (up to change of order) by four integers $p,q,r,s$ and $$ a = 2pr, \; b = qs, \; c = qr, \; d = ps \; . $$ In order to get abcd coprime we need $\gcd(p,q) = 1$ and $\gcd(r,s) = 1.$

FRIDAY: actually had a good program for finding matrix, this one is more attractive... Take column vector $$ \left( \begin{array}{c} a \\ b \\ c \\ d \\ \end{array} \right) $$ and take the matrix product (with abcd in the various orders, especially bacd) $$ \left( \begin{array}{cccc} 1 & 1 & 2 & 0 \\ 1 & 1 & 0 & 2 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ \end{array} \right) \left( \begin{array}{c} a \\ b \\ c \\ d \\ \end{array} \right) = \left( \begin{array}{c} x \\ y \\ u \\ v \\ \end{array} \right) $$ and throw out any where $\gcd(x,y,u,v) \neq 1.$

Alright, wrote them out without taking absolute values, $$ \color{magenta}{ x = 2pr+qs+2qr \; , \; \; y = 2pr + qs + 2ps \; , \; \; u=2pr +qr +ps \; , \; \; v = qs +qr+ps \; \; .} $$

$$ \left( \begin{array}{cccc} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 2 & 0 & 1 & 1 \\ 0 & 2 & 1 & 1 \\ \end{array} \right) \left( \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \\ \end{array} \right) \left( \begin{array}{cccc} 1 & 1 & 2 & 0 \\ 1 & 1 & 0 & 2 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ \end{array} \right) = \left( \begin{array}{cccc} 0 & 2 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & -4 \\ 0 & 0 & -4 & 0 \\ \end{array} \right) $$

Did some experiments, this is very successful... if we simply take the absolute values of xyuv, the order does not seem to matter at all. Also, it is not quite possible to demand my $p$ to be zero, this is still a four variable parametrization, but it may be taken quite small..

Raw search, with x >= y and u >= v

Wed Jul 11 16:55:20 PDT 2018
    1    1    1    0
    2    0    1    1
    3    1    2    1
    4    2    3    1
    5    1    3    2
    5    3    4    1
    5    5    4    3
    6    4    5    1
    7    1    4    3
    7    1    5    0
    7    3    5    2
    7    5    6    1
    8    2    5    3
    8    6    5    5
    8    6    7    1
    9    1    5    4
    9    5    7    2
    9    7    7    4
    9    7    8    1
   10    0    7    1
   10    4    7    3
   10    8    9    1
   11    1    6    5
   11    3    7    4
   11    3    8    1
   11    5    8    3
   11    7    7    6
   11    7    9    2
   11    9   10    1
   12    2    7    5
   12   10   11    1
Wed Jul 11 16:55:20 PDT 2018

======================================

Will Jagy
  • 139,541
1

Choose any pair of of relative primes for $u$ and $v$, with one odd and the other even. Let $x=u+v$ and $y=u-v$. Based on $(a^2 +b^2)(c^2+d^2)=(ac+bd)^2 +(ad-bc)^2$ and $2=1^2+1^2$ I'm not suggesting this is exhaustive but it's simple.

Leucippus
  • 26,329
  • Yes, $2(x^2+y^2)=(x-y)^2+(x+y)^2$ can generate some solutions. – Hang Wu Jul 11 '18 at 19:39
  • @HangWu Moreover, it will always generate at least one solution for any $a,b$ in $a^2+b^2=2(c^2+d^2)$; $a$ and $b$ have to be of the same parity, which means that they can be expressed as $(x-y)$ and $(x+y)$ for some $x$ and $y$, and then this identity holds. – Steven Stadnicki Jul 11 '18 at 19:46
1

The given equation is equivalent to $\left| \frac{x+iy}{u+iv} \right| = \sqrt{2}$ (except for the trivial solution $x=y=u=v=0$). Therefore, if we can enumerate the rational points $z \in \mathbb{Q}[i]$ such that $|z| = \sqrt{2}$, we will be done. This is equivalent to finding the points $(a,b) \in \mathbb{Q}^2$ such that $a^2 + b^2 = 2$.

From here, we can use the standard procedure: for any such point $(a,b)$, the line joining $(a,b)$ to $(1,1)$ will have rational slope (or slope $\infty$); and conversely, any line through $(1,1)$ with rational slope will cut the circle in exactly one other point which will have rational coordinates (assuming you consider the tangent with slope $-1$ to cut $(1,1)$ twice). Now, to solve this: we have $b = m(a-1) + 1 = ma - m + 1$ so $a^2 + b^2 = a^2 + m^2 a^2 - 2(m-1) a + (m-1)^2 = (1+m^2) a^2 - 2m(m-1) a + (m-1)^2 = 2$. Now since we know $a=1$ is one root of this equation, the other root must be $\frac{2m(m-1)}{1+m^2} - 1 = \frac{m^2-2m-1}{m^2+1}$; and then $b = m(a-1) + 1 = \frac{-m^2-2m+1}{1+m^2}$. Now, if $m = \frac{p}{q}$, then $a = \frac{p^2-2pq-q^2}{p^2+q^2}$ and $b = \frac{-p^2-2pq+q^2}{p^2+q^2}$.

This gives rational solutions of the form $x + iy = (a+ib) (u+iv) = (au-bv) + (av+bu) i$, i.e. $x = au - bv$ and $y = bu + av$. Substituting in, and scaling up by the denominator, we get integer solutions of the form $x = (p^2-2pq-q^2)u_0 - (-p^2-2pq+q^2)v_0$, $y = (-p^2-2pq+q^2)u_0 + (p^2-2pq-q^2)v_0$, $u = (p^2+q^2) u_0$, $v = (p^2+q^2) v_0$. For any particular integer values of $p,q,u_0,v_0$, you can then calculate $x,y,u,v$ and then divide the solution $(x,y,u,v)$ by $\gcd(x,y,u,v)$ to get a primitive solution. This should then generate each primitive solution (and should even generate each primitive solution exactly once with the restriction that $\gcd(p,q)=\gcd(u,v)=1$).


Come to think of it, it should also be possible to start with $(u,v)$ on a circle of radius $r$, then $(u-v,u+v)$ is on the circle of radius $r\sqrt{2}$, and then find the other intersection of a line with slope $m$ with the circle of radius $r\sqrt{2}$. If you then proceed similarly, you might get a somewhat simpler expression for the primitive solutions.

  • It cannot generate $(x,y,u,v)=(5,5,4,3)$ as well. – Hang Wu Jul 12 '18 at 04:15
  • Yes, it can - let's follow the logic backwards. $\frac{x+iy}{u+iv} = \frac{5+5i}{4+3i} = \frac{7+i}{5}$ and so $m$ is the slope between $(1,1)$ and $(7/5, 1/5)$ which is $\frac{1/5-1}{7/5-1} = -2$. So, $p=-2, q=1, u_0=4, v_0=3$ should generate this solution. Indeed, plugging in, that gives $(x,y,u,v) = (25,25,20,15)$ so dividing by the gcd 5 does give $(5,5,4,3)$. – Daniel Schepler Jul 12 '18 at 15:54
1

HINT.-A parametric solution of $$x^2+y^2=2z^2$$ is given by $$\begin{cases}x=a^2-b^2+2ab\\y=a^2-b^2-2ab\\z=a^2+b^2\end{cases}$$ Besides the pythagorean triple gives $$(a^2+b^2)^2=(a^2-b^2)^2+(2ab)^2$$ Finally we have the identity $$(a^2-b^2+2ab)^2+(a^2-b^2-2ab)^2=2[(a^2-b^2)^2+(2ab)^2]$$ from which we get infinitely many solutions of the proposed equation with the parameters $a$ and $b$.

Piquito
  • 29,594
0

$$ \color{magenta}{ x = 2pr+qs+2qr \; , \; \; y = 2pr + qs + 2ps \; , \; \; u=2pr +qr +ps \; , \; \; v = qs +qr+ps \; \; .} $$

   |x|  |y|  |u|  |v|             p    q    r    s 
    1    1    1    0              0   -1   -1    1
    2    0    1    1              0   -1   -1    0
    3    1    2    1              0   -1   -2    1
    4    2    3    1              0   -1   -3    2
    5    1    3    2              0   -1   -3    1
    5    3    4    1              0   -1   -4    3
    5    5    4    3              1   -3   -1    3
    6    4    5    1              0   -1   -5    4
    7    1    4    3              0   -1   -4    1
    7    1    5    0              1    1   -2    1
    7    3    5    2              0   -1   -5    3
    7    5    6    1              0   -1   -6    5
    8    2    5    3              0   -1   -5    2
    8    6    5    5              1   -4   -2    1
    8    6    7    1              0   -1   -7    6
    9    1    5    4              0   -1   -5    1
    9    5    7    2              0   -1   -7    5
    9    7    7    4              1    1   -2   -1
    9    7    8    1              0   -1   -8    7
   10    0    7    1              1    1   -3    2
   10    4    7    3              0   -1   -7    4
   10    8    9    1              0   -1   -9    8
   11    1    6    5              0   -1   -6    1
   11    3    7    4              0   -1   -7    3
   11    3    8    1              1    1   -3    1
   11    5    8    3              0   -1   -8    5
   11    7    7    6              1   -5   -2    1
   11    7    9    2              0   -1   -9    7
   11    9   10    1              0   -1  -10    9
   12   10   11    1              0   -1  -11   10
   12    2    7    5              0   -1   -7    2
   13   11   12    1              0   -1  -12   11
   13   11    9    8              1   -3   -2    7
   13   13   12    5              2   -5   -2    5
   13    1    7    6              0   -1   -7    1
   13    1    9    2              1    1   -4    3
   13    3    8    5              0   -1   -8    3
   13    5    9    4              0   -1   -9    5
   13    7   10    3              0   -1  -10    7
   13    9   10    5              1    1   -3   -1
   13    9   11    2              0   -1  -11    9
   14   12   11    7              1   -5   -3    2
   14   12   13    1              0   -1  -13   12
   14    4    9    5              0   -1   -9    4
   14    8   11    3              0   -1  -11    8
   14    8    9    7              1   -6   -2    1
   15   11   13    2              0   -1  -13   11
   15   13   14    1              0   -1  -14   13
   15    1    8    7              0   -1   -8    1
   15    5   11    2              1    1   -4    1
   15    7   11    4              0   -1  -11    7
   16   10   13    3              0   -1  -13   10
   16   14   15    1              0   -1  -15   14
   16    2   11    3              1    1   -5    4
   16    2    9    7              0   -1   -9    2
   16    6   11    5              0   -1  -11    6
   17   11   13    6              1    1   -4   -1
   17   11   14    3              0   -1  -14   11
   17    1   12    1              1    1   -5    3
   17   13   15    2              0   -1  -15   13
   17   15   16    1              0   -1  -16   15
   17   17   15    8              1   -5   -4    3
   17    1    9    8              0   -1   -9    1
   17    3   10    7              0   -1  -10    3
   17    5   11    6              0   -1  -11    5
   17    7   12    5              0   -1  -12    7
   17    7   13    0              2    1   -3    1
   17    9   11    8              1   -7   -2    1
   17    9   13    4              0   -1  -13    9
   18   16   13   11              1   -4   -5    3
   18   16   17    1              0   -1  -17   16
   18    4   11    7              0   -1  -11    4
   18    4   13    1              1    1   -5    2
   18    8   13    5              0   -1  -13    8
   19    1   10    9              0   -1  -10    1
   19   11   15    4              0   -1  -15   11
   19   13   12   11              1    1   -7    9
   19   13   16    3              0   -1  -16   13
   19   15   17    2              0   -1  -17   15
   19   17   15   10              1    1   -4   -3
   19   17   17    6              2    1   -3   -1
   19   17   18    1              0   -1  -18   17
   19    3   11    8              0   -1  -11    3
   19    3   13    4              1    1   -6    5
   19    5   12    7              0   -1  -12    5
   19    7   13    6              0   -1  -13    7
   19    7   14    3              1    1   -5    1
   19    9   11   10              1    3   -2   -1
   19    9   14    5              0   -1  -14    9
   20   10   13    9              1   -8   -2    1
   20   14   17    3              0   -1  -17   14
   20   18   19    1              0   -1  -19   18
   20    2   11    9              0   -1  -11    2
   20    6   13    7              0   -1  -13    6
   21    1   11   10              0   -1  -11    1
   21   11   16    5              0   -1  -16   11
   21    1   14    5              1    3   -3    1
   21   13   16    7              1    1   -5   -1
   21   13   17    4              0   -1  -17   13
   21   17   14   13              1   -3   -3   11
   21   17   19    2              0   -1  -19   17
   21   19   20    1              0   -1  -20   19
   21    5   13    8              0   -1  -13    5
   22   12   17    5              0   -1  -17   12
   22   16   17    9              1   -7   -3    2
   22   16   19    3              0   -1  -19   16
   22   20   19    9              1   -6   -4    3
   22   20   21    1              0   -1  -21   20
   22    4   13    9              0   -1  -13    4
   22    4   15    5              1    1   -7    6
   22    8   15    7              0   -1  -15    8
   23   11   15   10              1   -9   -2    1
   23   11   17    6              0   -1  -17   11
   23   11   18    1              2    1   -4    1
   23    1   12   11              0   -1  -12    1
   23    1   16    3              1    1   -7    5
   23   13   18    5              0   -1  -18   13
   23   15   16   11              2   -5   -2    7
   23   15   19    4              0   -1  -19   15
   23   17   20    3              0   -1  -20   17
   23   19   18   11              1    1   -5   -3
   23   19   21    2              0   -1  -21   19
   23   21   17   14              1   -3   -4   13
   23   21   22    1              0   -1  -22   21
   23    3   13   10              0   -1  -13    3
   23    5   14    9              0   -1  -14    5
   23    7   15    8              0   -1  -15    7
   23    7   17    0              1    3   -4    3
   23    9   16    7              0   -1  -16    9
   23    9   17    4              1    1   -6    1
   24   10   13   13              1   -6   -3    1
   24   10   17    7              0   -1  -17   10
   24   14   19    5              0   -1  -19   14
   24    2   13   11              0   -1  -13    2
   24    2   17    1              1    1   -7    4
   24   22   19   13              1    1   -5   -4
   24   22   23    1              0   -1  -23   22
   25   11   18    7              0   -1  -18   11
   25    1   13   12              0   -1  -13    1
   25   13   19    6              0   -1  -19   13
   25   15   16   13              1    1   -9   11
   25   15   19    8              1    1   -6   -1
   25   17   21    4              0   -1  -21   17
   25   19   18   13              1   -5   -5    3
   25   19   22    3              0   -1  -22   19
   25   21   22    7              2    1   -4   -1
   25   21   23    2              0   -1  -23   21
   25   23   24    1              0   -1  -24   23
   25   25   24    7              3   -7   -3    7
   25    3   14   11              0   -1  -14    3
   25    5   17    6              1    1   -8    7
   25    5   18    1              1    1   -7    3
   25    7   16    9              0   -1  -16    7
   25    9   17    8              0   -1  -17    9
   26    0   17    7              1    4   -3    1
   26   12   17   11              1  -10   -2    1
   26   12   19    7              0   -1  -19   12
   26   16   21    5              0   -1  -21   16
   26   20   23    3              0   -1  -23   20
   26   24   25    1              0   -1  -25   24
   26    4   15   11              0   -1  -15    4
   26    8   17    9              0   -1  -17    8
   26    8   19    3              1    1   -7    2
   27   11   16   13              1    3   -3   -1
   27   11   19    8              0   -1  -19   11
   27   11   20    5              1    1   -7    1
   27    1   14   13              0   -1  -14    1
   27    1   19    2              1    1   -8    5
   27   13   20    7              0   -1  -20   13
   27   17   22    5              0   -1  -22   17
   27   19   17   16              1    1  -10   13
   27   19   23    4              0   -1  -23   19
   27   23   23   10              1   -7   -4    3
   27   23   25    2              0   -1  -25   23
   27   25   26    1              0   -1  -26   25
   27    5   16   11              0   -1  -16    5
   27    5   19    4              2    1   -5    3
   27    7   17   10              0   -1  -17    7
   28   10   19    9              0   -1  -19   10
   28   10   21    1              1    3   -5    4
   28   18   23    5              0   -1  -23   18
   28    2   15   13              0   -1  -15    2
   28   22   25    3              0   -1  -25   22
   28   26   21   17              1   -4   -8    5
   28   26   27    1              0   -1  -27   26
   28    6   17   11              0   -1  -17    6
   28    6   19    7              1    1   -9    8
   29   11   16   15              1   -7   -3    1
   29   11   20    9              0   -1  -20   11
   29    1   15   14              0   -1  -15    1
   29   13   19   12              1  -11   -2    1
   29   13   21    8              0   -1  -21   13
   29   15   22    7              0   -1  -22   15
   29   15   23    2              2    1   -5    1
   29   17   22    9              1    1   -7   -1
   29   17   23    6              0   -1  -23   17
   29   19   24    5              0   -1  -24   19
   29   21   25    4              0   -1  -25   21
   29   23   19   18              1   -3   -4   15
   29   23   26    3              0   -1  -26   23
   29   25   27    2              0   -1  -27   25
   29   27   23   16              1    1   -6   -5
   29   27   28    1              0   -1  -28   27
   29   29   21   20              2   -7   -5    3
   29    3   16   13              0   -1  -16    3
   29    3   19    8              1    3   -4    1
   29    3   20    5              1    1   -9    7
   29    5   17   12              0   -1  -17    5
   29    7   18   11              0   -1  -18    7
   29    7   21    2              1    1   -8    3
   29    9   19   10              0   -1  -19    9
   30   16   17   17              1   -5   -5    2
   30   16   23    7              0   -1  -23   16
   30   20   19   17              1    1  -11   14
   30   20   23   11              1   -9   -3    2
   30   28   29    1              0   -1  -29   28
   30    4   17   13              0   -1  -17    4
   30    8   19   11              0   -1  -19    8
   31   11   21   10              0   -1  -21   11
   31    1   16   15              0   -1  -16    1
   31    1   20    9              1    5   -3    1
   31   13   22    9              0   -1  -22   13
   31   13   23    6              1    1   -8    1
   31   15   23    8              0   -1  -23   15
   31   17   20   15              1    1  -11   13
   31   17   24    7              0   -1  -24   17
   31   17   25    0              3    1   -4    1
   31   19   25    6              0   -1  -25   19
   31   21   26    5              0   -1  -26   21
   31   23   24   13              1    1   -7   -3
   31   23   27    4              0   -1  -27   23
   31   25   27    8              2    1   -5   -1
   31   25   28    3              0   -1  -28   25
   31   27   22   19              1   -3   -5   17
   31   27   26   13              2   -5   -4   11
   31   27   29    2              0   -1  -29   27
   31   29   26   15              1   -5   -7    5
   31   29   30    1              0   -1  -30   29
   31    3   17   14              0   -1  -17    3
   31    3   22    1              1    1   -9    5
   31    5   18   13              0   -1  -18    5
   31    5   22    3              1    3   -5    3
   31    7   19   12              0   -1  -19    7
   31    7   21    8              1    1  -10    9
   31    9   20   11              0   -1  -20    9
   32   10   21   11              0   -1  -21   10
   32   14   21   13              1  -12   -2    1
   32   14   23    9              0   -1  -23   14
   32   18   25    7              0   -1  -25   18
   32    2   17   15              0   -1  -17    2
   32   22   23   15              1   -6   -5    3
   32   22   27    5              0   -1  -27   22
   32   26   25   15              1    1   -7   -4
   32   26   27   11              1   -8   -4    3
   32   26   29    3              0   -1  -29   26
   32   30   29   11              1   -7   -5    4
   32   30   31    1              0   -1  -31   30
   32    6   19   13              0   -1  -19    6
   32    6   23    1              1    1   -9    4
   33    1   17   16              0   -1  -17    1
   33    1   23    4              1    1  -10    7
   33   13   23   10              0   -1  -23   13
   33   13   25    2              1    3   -6    5
   33   17   20   17              2   -5   -2    9
   33   17   25    8              0   -1  -25   17
   33   19   23   14              2    3   -3   -1
   33   19   25   10              1    1   -8   -1
   33   19   26    7              0   -1  -26   19
   33   23   28    5              0   -1  -28   23
   33   25   29    4              0   -1  -29   25
   33   29   26   17              1    1   -7   -5
   33   29   31    2              0   -1  -31   29
   33   31   25   20              1   -3   -6   19
   33   31   31    8              3    1   -4   -1
   33   31   32    1              0   -1  -32   31
   33    5   19   14              0   -1  -19    5
   33    7   20   13              0   -1  -20    7
   34    0   23    7              1    3   -5    2
   34   12   19   17              1   -8   -3    1
   34   12   23   11              0   -1  -23   12
   34   12   25    5              1    1   -9    2
   34   16   25    9              0   -1  -25   16
   34   20   27    7              0   -1  -27   20
   34   24   29    5              0   -1  -29   24
   34   28   23   21              1   -4   -9    5
   34   28   31    3              0   -1  -31   28
   34   32   27   19              1    1   -7   -6
   34   32   33    1              0   -1  -33   32
   34    4   19   15              0   -1  -19    4
   34    8   21   13              0   -1  -21    8
   34    8   23    9              1    1  -11   10
   35   11   23   12              0   -1  -23   11
   35    1   18   17              0   -1  -18    1
   35   13   21   16              1    3   -4   -1
   35   13   24   11              0   -1  -24   13
   35   15   23   14              1  -13   -2    1
   35   15   26    7              1    1   -9    1
   35   17   26    9              0   -1  -26   17
   35   19   27    8              0   -1  -27   19
   35   19   28    3              2    1   -6    1
   35   23   29    6              0   -1  -29   23
   35   25   22   21              1    1  -13   17
   35   25   27   14              1    1   -8   -3
   35   27   31    4              0   -1  -31   27
   35   29   32    3              0   -1  -32   29
   35   31   33    2              0   -1  -33   31
   35    3   19   16              0   -1  -19    3
   35   33   31   14              2   -5   -5   13
   35   33   34    1              0   -1  -34   33
   35    5   24    7              1    1  -11    9
   35    9   22   13              0   -1  -22    9
   36   10   23   13              0   -1  -23   10
   36   14   25   11              0   -1  -25   14
   36    2   19   17              0   -1  -19    2
   36   22   23   19              1    1  -13   16
   36   22   29    7              0   -1  -29   22
   36    2   23   11              1    4   -4    1
   36    2   25    5              1    1  -11    8
   36   26   25   19              1   -5   -7    4
   36   26   31    5              0   -1  -31   26
   36   34   35    1              0   -1  -35   34
   37   11   24   13              0   -1  -24   11
   37   11   27    4              1    1  -10    3
   37    1   19   18              0   -1  -19    1
   37    1   26    3              1    1  -11    7
   37   13   25   12              0   -1  -25   13
   37   15   26   11              0   -1  -26   15
   37   17   27   10              0   -1  -27   17
   37   19   24   17              1    1  -13   15
   37   19   28    9              0   -1  -28   19
   37   21   28   11              1    1   -9   -1
   37   21   29    8              0   -1  -29   21
   37   23   25   18              2   -5   -3   11
   37   23   30    7              0   -1  -30   23
   37   25   31    6              0   -1  -31   25
   37   27   32    5              0   -1  -32   27
   37   29   24   23              1   -3   -5   19
   37   29   31   12              1   -9   -4    3
   37   29   32    9              2    1   -6   -1
   37   29   33    4              0   -1  -33   29
   37   31   29   18              1    1   -8   -5
   37   31   34    3              0   -1  -34   31
   37    3   20   17              0   -1  -20    3
   37    3   25    8              2    1   -7    5
   37   33   35    2              0   -1  -35   33
   37   35   36    1              0   -1  -36   35
   37   37   35   12              1   -7   -6    5
   37    5   21   16              0   -1  -21    5
   37    5   24   11              1    3   -5    1
   37    7   22   15              0   -1  -22    7
   37    9   23   14              0   -1  -23    9
   37    9   25   10              1    1  -12   11
   37    9   26    7              2    3   -4    1
   38   12   25   13              0   -1  -25   12
   38   16   25   15              1  -14   -2    1
   38   16   27   11              0   -1  -27   16
   38   16   29    3              1    3   -7    6
   38   20   29    9              0   -1  -29   20
   38   24   29   13              1  -11   -3    2
   38   24   31    7              0   -1  -31   24
   38   28   33    5              0   -1  -33   28
   38   32   35    3              0   -1  -35   32
   38   36   29   23              1   -4  -11    7
   38   36   37    1              0   -1  -37   36
   38    4   21   17              0   -1  -21    4
   38    4   27    1              1    1  -11    6
   38    8   23   15              0   -1  -23    8
   38    8   27    5              1    4   -5    3
   39   11   25   14              0   -1  -25   11
   39    1   20   19              0   -1  -20    1
   39   13   22   19              1   -9   -3    1
   39   13   29    2              2    1   -7    3
   39   17   28   11              0   -1  -28   17
   39   17   29    8              1    1  -10    1
   39   19   29   10              0   -1  -29   19
   39   23   25   20              1    1  -14   17
   39   23   31    8              0   -1  -31   23
   39   23   32    1              3    1   -5    1
   39   25   28   17              1   -7   -5    3
   39   25   32    7              0   -1  -32   25
   39   29   34    5              0   -1  -34   29
   39   31   29   20              1   -5   -8    5
   39   31   35    4              0   -1  -35   31
   39   35   37    2              0   -1  -37   35
   39   37   31   22              1    1   -8   -7
   39   37   34   17              1    3   -9   11
   39   37   38    1              0   -1  -38   37
   39    5   22   17              0   -1  -22    5
   39    7   23   16              0   -1  -23    7
   39    7   28    1              1    1  -11    5
   40   10   27   11              1    1  -13   12
   40   10   29    3              1    1  -11    4
   40   14   27   13              0   -1  -27   14
   40   18   29   11              0   -1  -29   18
   40   18   31    1              1    4   -6    5
   40    2   21   19              0   -1  -21    2
   40   22   31    9              0   -1  -31   22
   40   26   33    7              0   -1  -33   26
   40   30   31   17              1    1   -9   -4
   40   34   33   17              1   -6   -7    5
   40   34   37    3              0   -1  -37   34
   40   38   39    1              0   -1  -39   38
   40    6   23   17              0   -1  -23    6
   41   11   26   15              0   -1  -26   11
   41   11   30    1              1    3   -7    5
   41    1   21   20              0   -1  -21    1
   41    1   29    0              2    3   -5    3
   41   13   22   21              1    5   -3   -1
   41   13   27   14              0   -1  -27   13
   41   13   30    5              1    1  -11    3
   41   15   28   13              0   -1  -28   15
   41   17   27   16              1  -15   -2    1
   41   17   29   12              0   -1  -29   17
   41   19   30   11              0   -1  -30   19
   41   21   31   10              0   -1  -31   21
   41   23   24   23              1   -5   -7    3
   41   23   31   12              1    1  -10   -1
   41   23   32    9              0   -1  -32   23
   41   23   33    4              2    1   -7    1
   41   25   33    8              0   -1  -33   25
   41   27   26   23              1    1  -15   19
   41   27   34    7              0   -1  -34   27
   41   29   30   19              2   -5   -4   13
   41   29   35    6              0   -1  -35   29
   41   31   36    5              0   -1  -36   31
   41    3   22   19              0   -1  -22    3
   41    3   26   13              1    7   -3    1
   41    3   29    2              1    1  -12    7
   41   33   32   19              1    1   -9   -5
   41   33   37    4              0   -1  -37   33
   41   35   38    3              0   -1  -38   35
   41   37   30   25              1   -3   -7   23
   41   37   38    9              3    1   -5   -1
   41   37   39    2              0   -1  -39   37
   41   39   40    1              0   -1  -40   39
   41   41   40    9              4   -9   -4    9   RECORD  P 4
   41    5   23   18              0   -1  -23    5
   41    7   24   17              0   -1  -24    7
   41    7   28    9              1    1  -13   11
   41    9   25   16              0   -1  -25    9
   42   16   29   13              0   -1  -29   16
   42   16   31    7              1    1  -11    2
   42   20   31   11              0   -1  -31   20
   42   32   35   13              1  -10   -4    3
   42   32   37    5              0   -1  -37   32
   42   40   29   29              2   -7   -7    4
   42   40   41    1              0   -1  -41   40
   42    4   23   19              0   -1  -23    4
   42    4   29    7              1    1  -13   10
   42    8   25   17              0   -1  -25    8
   43   11   27   16              0   -1  -27   11
   43   11   29   12              1    1  -14   13
   43    1   22   21              0   -1  -22    1
   43    1   27   14              1    5   -4    1
   43    1   30    5              1    1  -13    9
   43   13   28   15              0   -1  -28   13
   43   15   26   19              1    3   -5   -1
   43   15   29   14              0   -1  -29   15
   43   17   30   13              0   -1  -30   17
   43   19   24   23              2   -5   -2   11
   43   19   31   12              0   -1  -31   19
   43   19   32    9              1    1  -11    1
   43   19   33    4              1    3   -8    7
   43   21   28   19              1    1  -15   17
   43   21   32   11              0   -1  -32   21
   43   23   30   17              2    3   -4   -1
   43   23   33   10              0   -1  -33   23
   43   25   34    9              0   -1  -34   25
   43   27   35    8              0   -1  -35   27
   43   29   33   16              1    1  -10   -3
   43   29   36    7              0   -1  -36   29
   43   31   27   26              1    1  -16   21
   43   31   37    6              0   -1  -37   31
   43    3   23   20              0   -1  -23    3
   43   33   37   10              2    1   -7   -1
   43   33   38    5              0   -1  -38   33
   43   35   31   24              2   -9   -5    3   RECORD  P 2
   43   35   39    4              0   -1  -39   35
   43   37   40    3              0   -1  -40   37
   43   39   34   23              1    1   -9   -7
   43   39   41    2              0   -1  -41   39
   43   41   33   26              1   -3   -8   25
   43   41   42    1              0   -1  -42   41
   43    5   24   19              0   -1  -24    5
   43    7   25   18              0   -1  -25    7
   43    7   30    7              2    1   -8    5
   43    9   26   17              0   -1  -26    9
   43    9   31    2              1    1  -12    5
   44   10   27   17              0   -1  -27   10
   44   14   25   21              1  -10   -3    1
   44   14   29   15              0   -1  -29   14
   44   18   29   17              1  -16   -2    1   RECORD  P 1
   44   18   31   13              0   -1  -31   18
   44    2   23   21              0   -1  -23    2
   44    2   31    3              1    1  -13    8
   44   26   35    9              0   -1  -35   26
   44   30   37    7              0   -1  -37   30
   44   34   39    5              0   -1  -39   34
   44   38   31   27              1   -4  -12    7
   44   38   39   13              1   -9   -5    4
   44   38   41    3              0   -1  -41   38
   44   42   35   25              1    1   -9   -8
   44   42   41   13              1   -8   -6    5
   44   42   43    1              0   -1  -43   42
   44    6   25   19              0   -1  -25    6
   44    6   31    5              1    3   -7    4
   45   11   28   17              0   -1  -28   11
   45   11   32    7              1    5   -5    3
   45    1   23   22              0   -1  -23    1
   45   13   29   16              0   -1  -29   13
   45   17   31   14              0   -1  -31   17
   45   17   34    1              2    1   -8    3
   45   19   32   13              0   -1  -32   19
   45   23   34   11              0   -1  -34   23
   45   25   29   22              1    1  -16   19
   45   25   34   13              1    1  -11   -1
   45   29   37    8              0   -1  -37   29
   45   31   38    7              0   -1  -38   31
   45   35   29   28              1   -3   -6   23
   45   35   37   16              3   -7   -4   11   RECORD  P 3
   45   37   41    4              0   -1  -41   37
   45   41   37   22              1   -5  -10    7
   45   41   43    2              0   -1  -43   41
   45   43   41   16              2    1   -7   -3
   45   43   44    1              0   -1  -44   43   RECORD  ABS 44
   45    5   31    8              1    1  -14   11
   45    5   32    1              1    1  -13    7
   45    7   26   19              0   -1  -26    7
   45    7   29   14              1    3   -6    1
   |x|  |y|  |u|  |v|             p    q    r    s 

===============================

Will Jagy
  • 139,541