Possible Duplicate:
Prove that $\gcd(a^n - 1, a^m - 1) = a^{\gcd(n, m)} - 1$
Given $n \ge 1$ and $s, t \in \mathbb{Z}^{+}$, $s \ge t$, prove that $$\gcd(n^{s} - 1, n^{t} - 1) = n^{\gcd(s, t)} - 1$$
I've been looking at this problem for a while now, but I'm not certain where to begin. Can induction on $s$ be used to prove the result for $n \geq 1$ since $s \ge t$?