Let $A \in \mathbb{R}^{n \times n}, B\in \mathbb{R}^{n \times n}$ are two positive semi-definite matrices and $A \leq B$ means $B - A$ is positive semi-definite. Also let $I \in \mathbb{R}^{m \times m}$ be the identity matrix. And $\otimes$ denotes the Kronecker product of matrix.
If $0 \leq A \leq B$, can I conclude that $(A \otimes I) \leq (B \otimes I)$?