Let $ X $, $ Y $ and $ Z $ be $ S $-schemes. Suppose that we have a morphism $ \varphi : X \times_{S} Z \to Y \times_{S} Z $. Let $ V $ be an open affine subset of $ Y $ and let $ U' = \varphi ^ { -1 } ( V \times _{S} Z ) $. Is it true that there is an open affine cover of $ U ' $ by opens of the form $ U _{i} \times _{S} Z $ where $ U_{i} $ are open affine in $ X $?
P.S. The situation where I need this is the following: $ S $ is locally Noetherian, $ Z = \text{Spec} O_{S,s} $ for some $ s \in S $ and $ Y $ is finite type over $ S $.