Prove: $\lim_{x \to a} \sqrt{x} = \sqrt{a}$ using $\epsilon$-$\delta$.
My solution:
We have that $0 < |x-a| < \delta $.
Also, $ |\sqrt{x} - \sqrt{a}| < \epsilon $
$ \therefore -\epsilon < \sqrt{x} - \sqrt{a} < \epsilon $
$ \therefore \sqrt{a} -\epsilon < \sqrt{x} < \sqrt{a} + \epsilon $
$ \therefore (\sqrt{a} -\epsilon)^2 < x < (\sqrt{a} + \epsilon)^2 $
$ \therefore (\sqrt{a} -\epsilon)^2 - a < x - a < (\sqrt{a} + \epsilon)^2 - a $
$ \therefore \epsilon^2 - 2\sqrt{a}\epsilon < x - a < \epsilon^2 + 2\sqrt{a}\epsilon $
$ \delta = \min(|\epsilon^2 - 2\sqrt{a}\epsilon|,|\ \epsilon^2 + 2\sqrt{a}\epsilon|) $
By letting $ \delta = \min(|\epsilon^2 - 2\sqrt{a}\epsilon|,|\ \epsilon^2 + 2\sqrt{a}\epsilon|) $, we get that $|\sqrt{x}-\sqrt{a}|<\epsilon$ if $0 < |x-a| < \delta $.
Thus, $\lim_{x \to a} \sqrt{x} = \sqrt{a}$.
Question: is it correct to find a $ \delta $ using the method above?
I've seen a bunch of other methods used to find $\delta$ but I'm totally confused what is the "right" way of doing it. If anyone could explain this or give some other examples, I would appreciate it.
Thank you a lot!