Using the sum of AP;
$$\left(\sum_{m=1}^{n}{m}\right)^2=(1+2+3+...+n)^{2}=\frac{n^{2}(n+1)^{2}}{4}$$
Now by Principle of Mathematical Induction,
for $n=1$,
$$\frac{1^{2}(2)^2}{4}=1$$ so its true for $n=1$,
now for $n=2$, $$\frac{2^{2}(3^{2})}{4}=9=1+2^{3}$$ so its true for $n=2$,
Now assume it holds for $n=k$, and now we can easily show that it is true for $n=k+1$ as follows;
Add $(k+1)^3$, which is $(k+1)^{\mathrm th}$ term of the LHS to both sides; then we get:
$$\begin{align*}
1^3 + 2^3 + 3^3 + \cdots + k^3 + (k+1)^3 &= \frac{k^2(k+1)^2}{4} + (k+1)^3\\
&= \frac{k^2(k+1)^2 + 4(k+1)^3}{4}\\
&= \frac{(k+1)^2(k^2 + 4k + 4)}{4}\\
&= \frac{(k+1)^2(k+2)^2}{4}.\\
1^3 + 2^3 + 3^3 + \cdots + k^3 + (k+1)^3 &= \frac{(k+1)^2(k+2)^2}{4}
\end{align*}$$
Hence the proof.